Skip to main content
Log in

Microstructure and Properties of Composite Materials Diamond – Silicon Carbide

  • Published:
Refractories and Industrial Ceramics Aims and scope

A diamond – silicon carbide composite material has been obtained. The reaction-diffusion mechanism of Turing sintering is investigated. The conditions for the growth of SiC grains on diamond particles during formation of the composite are shown. The process of graphitization of diamond particles during reaction sintering has been investigated. The mechanical characteristics of the diamond – silicon carbide composite have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. R. Riedel, Handbook of Ceramic Hard Materials, Wiley-VCH, Weinheim, New York, 2000.

  2. L. Schafer, Diamantbeschichtete Keramik DiaCer: Leistungsfähiger Werkstoffverbund für extreme Anforderungen, Diamond Business, 22 – 26 (2011).

  3. M. Shimono and S. Kume, “HIP-sintered composites of C (diamond)/ SiC,” J. Am. Ceram. Soc., 87(4), 752 – 755 (2004).

    Article  CAS  Google Scholar 

  4. O. Ohtaka, M. Shimono, N. Ohnishi, et al., “HIP production of a diamond/SiC composite and application to high-pressure anvils,” Phys. Earth Planet. Inter., 143, 587 – 591 (2004).

    Article  Google Scholar 

  5. O. Ohtaka, N. Ohnishi, K. Kubo, et al., “High-pressure and high-temperature generation using diamond/SiC composite anvils prepared with hot isostatic pressing,” High Pressure Res., 25(1), 11 – 15 (2005).

    Article  CAS  Google Scholar 

  6. Z. He, H. Katsui, and T. Goto, “High-hardness diamond composite consolidated by spark plasma sintering,” J. Am. Ceram. Soc., 99(6), 1862 – 1865 (2016).

    Article  CAS  Google Scholar 

  7. M. Kitiwan, H. Katsui, and T. Goto, “Spark plasma sintering of SiC-coated large-size diamond powder,” Mater. Today: Proc., 4(11), 11453 – 11456 (2017).

    CAS  Google Scholar 

  8. S. Kume, K. Suzuki, H. Yoshida, et al., “Reaction sintering of Si coated-diamond fine particles under ultrahigh pressure,” Rev. High Pressure Sci. Technol., 7, 1010 – 1012 (1998).

    Article  CAS  Google Scholar 

  9. Y. S. Ko, T. Tsurumi, O. Fukunaga, et al., “High pressure sintering of diamond-SiC composite,” J. Mater. Sci., 36(2), 469 – 475 (2001).

    Article  CAS  Google Scholar 

  10. J. Qian, G. Voronin, T. W. Zerda, et al., “High-pressure, high-temperature sintering of diamond-SiC composites by ball-milled diamond-Si mixtures,” J. Mater. Res., 17(8), 2153 – 2160 (2002).

    Article  CAS  Google Scholar 

  11. G. A. Voronin, T. W. Zerda, J. Gubicza, et al., “Properties of nanostructured diamond – silicon carbide composites sintered by high pressure infiltration technique,” J. Mater. Res., 19(9), 2703 – 2707 (2004).

    Article  CAS  Google Scholar 

  12. C. Zhu, J. Lang, and N. Ma, “Preparation of Si – diamond-SiC composites by in-situ reactive sintering and their thermal properties,” Ceram. Int., 38(8), 6131 – 6136 (2012).

    Article  CAS  Google Scholar 

  13. Y. Liu, C. Hu, J. Men, et al., “Effect of diamond content on microstructure and properties of diamond/SiC composites prepared by tape-casting and CVI process,” J. Eur. Ceram. Soc., 35(8), 2233 – 2242 (2015).

    Article  CAS  Google Scholar 

  14. B. Matthey, S. Kunze, M. Horner, et al., “SiC-bonded diamond materials produced by pressureless silicon infiltration,” J. Mater. Res., 32(17), 3362 – 3371 (2017).

    Article  CAS  Google Scholar 

  15. J. Li, Y. Liu, B. Nan, et al., “Microstructure and properties of C/SiC-diamond composites prepared by the combination of CVI and RMI,” Adv. Eng. Mater., 21(5), 1800765 (2019).

    Article  Google Scholar 

  16. A. Taylor, L. Klimsa, J. Kopecek, et al., “Synthesis and properties of diamond – silicon carbide composite layers,” J. Alloys Compd., 800, 327 – 333 (2019).

    Article  CAS  Google Scholar 

  17. W. F. Knippenberg, “Growth phenomena in silicon carbide,” Philips Res. Rep., 18, 161 – 274 (1963).

    CAS  Google Scholar 

  18. K. Mlungwane, I. J. Sigalas, and M. Herrmann, “The development of a diamond-silicon carbide composite material,” Ind. Diamond Rev., No. 4, 62 – 65 (2005).

  19. K. Mlungwane, I. J. Sigalas, and M. Herrmann, “The wetting behaviour and reaction kinetics in diamond-silicon carbide systems,” Ceram. Int., 35(6), 2435 – 2441 (2009).

    Article  CAS  Google Scholar 

  20. K. Mlungwane, M. Herrmann, and I. Sigalas, “The low-pressure infiltration of diamond by silicon to form diamond-silicon carbide composites,” J. Eur. Ceram. Soc., 28(1), 321 – 326 (2008).

    Article  CAS  Google Scholar 

  21. V. Y. Shevchenko, M. V. Kovalchuk, A. S. Oryshchenko, et al., “New chemical technologies based on Turing reaction-diffusion processes,” Dokl. Chem., 496(2), 28 – 31 (2021).

    Article  CAS  Google Scholar 

  22. V. Y. Shevchenko, S. N. Perevislov, V. L. Ugolkov, “Physicochemical interaction processes in the carbon (diamond)–silicon system,” Glass Phys. Chem., 47(3), 197 – 208 (2021).

    Article  CAS  Google Scholar 

  23. V. Y. Shevchenko and S. N. Perevislov, “Reaction-diffusion mechanism of synthesis in the diamond-silicon carbide system,” Russ. J. Inorg. Chem., 66(8), 1107 – 1114 (2021).

    Article  CAS  Google Scholar 

  24. A. Turing, “The chemical basis of morphogenesis,” Philos. Trans. R. Soc. London, Ser. B, 237(641), 37 – 72 (1952).

    Article  Google Scholar 

  25. C. Zollfrank and H. Sieber, “Microstructure evolution and reaction mechanism of biomorphous SiSiC ceramics,” J. Am. Ceram. Soc., 88(1), 51 – 58 (2005).

    Article  CAS  Google Scholar 

  26. V. Y. Shevchenko, M. V. Koval’chuk, and A. S. Oryshchenko, “Synthesis of a new class of materials with a regular (periodic) interconnected microstructure,” Glass Phys. Chem., 45(6), 412 – 418 (2019).

  27. J. S. Park, R. Sinclair, D. Rowcliffe, et al., “Orientation relationship in diamond and silicon carbide composites,” Diamond Relat. Mater., 16(3), 562 – 565 (2007).

    Article  CAS  Google Scholar 

  28. V. R. Howes, “The graphitization of diamond,” Proc. Phys. Soc., 80(3), 648 (1962).

    Article  CAS  Google Scholar 

  29. J. W. Harris and E. R. Vance, “Induced graphitisation around crystalline inclusions in diamond,” Contrib. Mineral. Petrol., 35(3), 227 – 234 (1972).

    Article  CAS  Google Scholar 

  30. T. Evans and D. H. Sauter, “Etching of diamond surfaces with gases,” Philos. Mag., 6(63), 429 – 440 (1961).

    Article  CAS  Google Scholar 

  31. S. Dallek, L. Kabacoff, and M. Norr, “Oxidation kinetics of type 2A natural diamond {100} and {111} surfaces by TG,” Thermochim. Acta, 192, 321 – 326 (1991).

  32. Q. Sun and M. Alam, “Relative oxidation behavior of chemical vapor deposited and type II a natural diamonds,” J. Electrochem. Soc., 139(3), 933 – 936 (1992).

    Article  CAS  Google Scholar 

  33. W. J. P. von Enckewort and F. K. de Theije, “Etching of diamond,” in: M. H. Nazare and A. J. Neves (eds.), Properties, Growth and Applications of Diamond, emis Datareviews Series No. 26, INSPEC, The Institution of Electrical Engineers, London, UK, 2001, pp. 115 – 124.

  34. R. A. Khmelnitsky and A. A. Gippius, “Transformation of diamond to graphite under heat treatment at low pressure,” Phase Transitions, 87(2), 175 – 192 (2014).

    Article  CAS  Google Scholar 

  35. J. K. Lewis, H. Chen, S. Nafis, et al., “High temperature graphitization of diamond,” Proc. Electrochem. Soc., 91(8), 455 – 462 (1991).

    Google Scholar 

  36. V. Ya. Shevchenko, Introduction to Technical Ceramics [in Russian], Nauka, Moscow, 1993, 114 pp.

  37. D. D. Nesmelov and S. N. Perevislov, “Reaction sintered materials based on boron carbide and silicon carbide,” Glass Ceram., 71(9/10), 313 – 319 (2015).

    Article  CAS  Google Scholar 

  38. S. N. Perevislov, M. V. Tomkovich, M. A. Markov, et al., “The influence of dispersed composition of SiC on the physico-mechanical properties of reactive-sintered silicon carbide,” J. Mach. Manuf. Reliab., 49(6), 511 – 517 (2020).

    Article  Google Scholar 

  39. D. D. Nesmelov, O. A. Kozhevnikov, S. S. Ordan’yan, et al., “Precipitation of the eutectic Al2O3–ZrO2(Y2O3) on the surface of SiC particles,” Glass Ceram., 74(1), 43 – 47 (2017).

  40. S. N. Perevislov, A. S. Lysenkov, and S. V. Vikhman, “Effect of Si additions on the microstructure and mechanical properties of hot-pressed B4C,” Inorg. Mater., 53(4), 376 – 380 (2017).

    Article  CAS  Google Scholar 

  41. S. N. Perevislov, P. V. Shcherbak, and M. V. Tomkovich, “High density boron carbide ceramics,” Refract. Ind. Ceram., 59(1), 32 – 36 (2018).

    Article  CAS  Google Scholar 

  42. S. N. Perevislov, P. V. Shcherbak, and M. V. Tomkovich, “Phase composition and microstructure of reaction-bonded boron-carbide materials,” Refract. Ind. Ceram., 59, No. 2, 179 – 183 (2018).

    Article  CAS  Google Scholar 

  43. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, et al., “Materials based on boron carbide obtained by reaction sintering,” IOP Conf. Ser.: Mater. Sci. Eng., 525(1), 012074 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Additional information

Translated from Novye Ogneupory, No. 9, pp. 48 – 54, September, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Perevislov, S.N. Microstructure and Properties of Composite Materials Diamond – Silicon Carbide. Refract Ind Ceram 62, 548–553 (2022). https://doi.org/10.1007/s11148-022-00640-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-022-00640-w

Keywords

Navigation