Skip to main content
Log in

Cement-Free Refractory Concretes. Part 11. Colloidal-Chemistry Aspect of Technology

  • SCIENTIFIC RESEARCH AND DEVELOPMENT
  • Published:
Refractories and Industrial Ceramics Aims and scope

The article discusses mechanisms of interaction between particles and the aggregate stability of suspensions as matrix systems of CFRC from the standpoint of dispersed system colloid chemistry. When considering sedimentation stability it is shown that a significant increase or achievement of complete sedimentation stability is achieved by a high suspension concentration, increased polydispersion, and also by stabilization. Criteria for evaluating the efficiency of using deflocculants in CFRC technology are proposed and a comparative assessment of their diluting effect as applied to bauxite HCBS is provided. A significant advantage is noted for deflocculants of composite (organomineral) composition compared with traditional materials. The stabilizing effect using very fine quartz glass in the production of HCBS based on bauxite and corundum is demonstrated. The effect of drying materials based on HCBS on structure formation is specified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. Yu. E. Pivinskii, Ceramic Binders and Ceramic Concretes [in Russian], Metallurgiya, Moscow (1990).

    Google Scholar 

  2. Yu. E. Pivinskii, Ceramic and Refractory Materials [in Russian], Stroizdat SPb, St. Petersburg (2003).

    Google Scholar 

  3. Yu. E. Pivinskii, Dispersed System Rheology, HCBS and Ceramic Concretes. Elements of Nanotechnology and Silicate Materials Science: in 3 Vol [in Russian], Politekhnika, St. Petersburg (2012).

  4. Yu. E. Pivinskii, Unmolded Refractories, in 2 Vol., Vol. 1 [in Russian], Teplotekhnik, Moscow (2003).

  5. A. P. Luz, M. A. J. Braulio, and V. C. Pandolfelli, Refractory Castable Engineering, Goller Verlag GmbH, Baden-Baden, Germany (2015).

    Google Scholar 

  6. S. Banerjee, Monolithic Refractories: a Comprehensive Handbook, World Scientific, Singapore (1998).

    Book  Google Scholar 

  7. M. Nouri-Khezrabad, A. P. Luz, and V. R. Salvini, “Nanobonded refractory castables,” Ceram. Int., 39, 3479 – 3497 (2013).

    Article  CAS  Google Scholar 

  8. R. Sarkar, “Nanotechnology in refractory castables — an overview,” Refractories World Forum, 10(1), 22 – 31 (2018).

    Google Scholar 

  9. Chr. Parr, J. M. Auvray, M. Szepizdyn, et al., “A review of bond systems for monolithic castable refractories,” Refractories World Forum, 7(2), 62 – 72 (2015).

  10. Yu. E. Pivinskii, “Cement-free refractory concretes. Part 1. General information. HCBS and ceramic concretes,” Refract. Ind. Ceram., 60(5), 430 – 438 (2020).

    Article  CAS  Google Scholar 

  11. Yu. E. Pivinskii, P. V. Dyakin, E. M. Grishpun, and A. M. Gorokhovsky, “Cement-free refractory concretes. Part 2. High-alumina and corundum ceramic concretes,” Refract. Ind. Ceram., 60(6), 566 – 573 (2020).

    Article  CAS  Google Scholar 

  12. Yu. E. Pivinskii, “Cement-free refractory concretes. Part 3. Very fine forms of silica as effective refractory concrete components,” Refract. Ind. Ceram., 61(7), 31 – 39 (2020).

    Article  CAS  Google Scholar 

  13. Yu. E. Pivinskii, “Cement-free refractory concretes. Part 4. Refractory concretes based on silica sol binders,” Refract. Ind. Ceram., 61(7), 150 – 158 (2020).

    Article  CAS  Google Scholar 

  14. Yu. E. Pivinskii and P. V. Dyakin, “Cement-free refractory concretes. Part 5. Cement-free refractory concretes based on hydraulic alumina binders,” Refract. Ind. Ceram., 61(7), 374 – 383 (2020).

    Article  CAS  Google Scholar 

  15. Yu. E. Pivinskii, “Cement-free refractory concretes. Part 7. Characteristics of castable mixes and their grain distribution,” Refract. Ind. Ceram., 61(1), 41 – 44 (2021).

    Google Scholar 

  16. Yu. E. Pivinskii, Theoretical Aspects of Ceramic Technology and Refractories, Vol. 1 [in Russian], Stroiizdat, St. Petersburg (2003).

  17. Yu. G. Frolov, Colloid Chemistry Course. Surface Phenomena and Dispersed Systems [in Russian], Khimiya, Moscow (182).

  18. Success in Colloid Chemistry: coll. works [in Russian], Naukova Dumka, Kiev (1983).

  19. V. V. Deryagin, I. V. Churaev, and V. M. Muller, Surface Forces [in Russian], Nauka, Moscow (1987).

    Book  Google Scholar 

  20. F. S. Kaplan, and Yu. E. Pivinskii, “Rheological and Colloidal Properties of ceramic Dispersed Systems” in: Chemistry and Technology of Silicate and Refractory Nonmetallic Materials [in Russian], Nauka, Leningrad (1989).

    Google Scholar 

  21. B. V. Deryagin, Theory of Colloid and Thin Film Stability [in Russian], Nauka, Moscow (1986)

    Google Scholar 

  22. F. S. Kaplan, Yu. E. Pivinskii, and A. N. Saprykin, “Features of dilatant hardening of dispersions of quartz glass,” Colloid J., 50(6), 937 – 942 (1989).

    Google Scholar 

  23. Yu. E. Pivinskii and R. Ya. Popil’ski, “Sedimentation stability of ceramic slips,” Glass and Ceramics, 26(4), 232 – 236, (1969).

  24. Yu. E. Pivinskii, “Condition for the complete stability of ceramic slips,” Glass and Ceramics, 28(6), 373 – 376 (1971).

    Article  Google Scholar 

  25. Yu. E. Pivinskii, “Rheological and sedimentation properties of ceramic suspensions containing granular aggregates,” Refractories, 13(3/4), 264 – 270 (1972).

    Article  Google Scholar 

  26. Yu. E. Pivinskii, “Nanodispersed silica and same aspects nanotechnologies in the field of silicate science. Part 3,” Refract. Ind. Ceram., 49(1), 38 – 49 (2008).

    Article  CAS  Google Scholar 

  27. Yu. E. Pivinskii, and D. A. Dobrodon, “Preparation and properties of high-alumina suspensions in the bauxite-quartz system, Novye Ogneupory, No. 5, 10 – 26 (2002)

  28. Yu. E. Pivinskii, Yu. N. Ermak, A. V. Cherevatova, et al., “The effect of thinning agents on the rheological and technological properties of the bauxite HCBS system,” Refract. Ind. Ceram., 44(3), 169 – 175 (2003).

    Article  CAS  Google Scholar 

  29. Yu. E. Pivinskii, Pavel V. Dyakin, and Petr V. Dyakin, “Dispersing (deflocculation) aluminas,” Refract. Ind. Ceram., 45(3), 201 – 211 (2004).

    Article  CAS  Google Scholar 

  30. Yu. E. Pivinskii, Pavel V. Dyakin, and Petr V. Dyakin, “The selective thinning effect of dispersing aluminas,” Refract. Ind. Ceram., 45(4), 45 – 49 (2004).

    Article  Google Scholar 

  31. Yu. E. Pivinskii, Pavel V. Dyakin, and Petr V. Dyakin, “A study and comparative assessment of the thinning effect in deflocculants. Part 1. Bauxite based highly concentrated ceramic binding suspensions (HCBS),” Refract. Ind. Ceram., 45(5), 343 – 352 (2004).

    Article  CAS  Google Scholar 

  32. Yu. E. Pivinskii, V. A. Doroganov, and A. V. Cherevatova, “Thinning and plasticization of HCBS (highly concentrated ceramic binding suspension) based on high-alumina chamotte,” Refract. Ind. Ceram., 45(3), 172 – 176 (2004).

    Article  Google Scholar 

  33. Yu. E. Pivinskii, Pavel V. Dyakin, and Petr V. Dyakin, “Pressure-molded high alumina ceramic castables. Part 3. Effect of processing additives on pressure-induced compaction and properties of bauxite – quartz glass matrix systems,” Refract. Ind. Ceram., 47(2), 132 – 138 (2006).

    Article  CAS  Google Scholar 

  34. Yu. E. Pivinskii and P. V. Dyakin, “Preparation and properties of corundum HCBS and ceramic concretes. Part 1. Mixed HCBS in the system electrocorundum — very fine quartz glass,” Refract. Ind. Ceram., 51(1), 25 – 31 (2010).

    Article  CAS  Google Scholar 

  35. Yu. E. Pivinskii and P. V. Dyakin, “Preparation and properties of corundum HCBS and ceramic concretes. Part 3. Casting and volume constancy of ceramic concretes,” Refract. Ind. Ceram., 51(1), 88 – 94 (2010).

    Article  CAS  Google Scholar 

  36. Yu. E. Pivinskii, “Thinning, plastifying, and strengthening additives as effective modifiers in HCBS and ceramic concrete technology. Part 1,” Refract. Ind. Ceram., 53(1), 12 – 17 (2012).

    Article  CAS  Google Scholar 

  37. Yu. E. Pivinskii, “Thinning, plastifying, and strengthening additives as effective modifiers in HCBS and ceramic concrete technology. Part 2,” Refract. Ind. Ceram., 53(6), 419 – 426 (2012).

    Article  CAS  Google Scholar 

  38. Yu. E. Pivinskii and E. I. Suzdal’tsev, Quartz Ceramic and Refractories. Vol. 1. Theoretical Bases and Production Processes, Editor Yu. E. Pivinskii, [in Russian], Teploénergetik, Moscow (2008).

  39. Yu. E. Pivinskii and E. I. Suzdal’tsev, Quartz Ceramic and Refractories. Vol. 1. Materials, Properties and Fields of Application, Editor Yu. E. Pivinskii, [in Russian], Teploénergetik, Moscow (2008).

  40. Yu. E. Pivinskii and M. A. Trubitsyn, “Highly concentrated ceramic binder suspension (HCBS). Dispersion medium, stabilization, and binding properties,” Refractories, No. 11/12, 635 – 639 (1987).

    Article  Google Scholar 

  41. Yu. E. Pivinskii, V. A. Doroganov, E. A. Doroganov, and P. V. Dyakin, “Synergetic effect of combined additions of clay and complex organomineral thinner (COMT) in ceramic concrete technology,” Refract. Ind. Ceram., 61(6), 691 – 694 (2021).

    Article  CAS  Google Scholar 

  42. Yu. M. Bazhenov, V. S. Dem’yanova, and V. I. Kalashnikov, Modified High Quality Concretes [in Russian], Idz. Assots. Stroit. Vuz., Moscow (2006).

  43. A. J. Millan, C. A. Getierrez, M. I. Nielo, et al., “Ageing behavior of alumina casting slip,” Am. Ceram. Soc. Bull., No. 5, 64 – 68 (2000).

    Google Scholar 

  44. I. R. Oliveira, P. Sepulveda, and V. C. Pandolfelli, “Deflocculation of Al2O3–SiC suspensions,” Am. Ceram. Soc. Bull., 80(2), 47 – 53 (2001).

    CAS  Google Scholar 

  45. A. R. Studart and V. C. Pandolfelli, “Dispersants for high-alumina castables,” Am. Ceram. Soc. Bull., No. 4, 36 – 44 (2002).

    Google Scholar 

  46. D. Nepper, Colloidal Polymer Dispersion Stabilization [in Russian], Mir, Moscow (1986).

    Google Scholar 

  47. Yu. E. Pivinskii, V. A. Doroganov, and E. A. Doroganov, “Cement-free refractory concretes. Part 6. Comparative evaluation of natural (clay) and artificial ceramic binders (HCBS),” Refract. Ind. Ceram., 61(5), 507 – 512 (2021).

    Article  CAS  Google Scholar 

  48. Yu. E. Pivinskii, Quartz Ceramic, HCBS and Ceramic Concretes. History of Creation and Development [in Russian], Politekhnika-Print, St Petersburg (2018).

  49. Yu. E. Pivinskii and P. V. Dyakin, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 4. Effect of refractory clay additions on properties of compound composition HCBS, castings and materials based on them,” Refract. Ind. Ceram., 57(1), 70 – 76 (2016).

    Article  Google Scholar 

  50. Yu. E. Pivinskii, P. V. Dyakin, and L. V. Ostryakov, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 3. Effect of firing temperature on sintering and mullitization of materials prepared on the basis of composite composition HCBS,” Refract. Ind. Ceram., 56(6), 648 – 655 (2015).

    Article  CAS  Google Scholar 

  51. Yu. E. Pivinskii and V. A. Doroganov, “Structure-mechanical properties of plasticized mixes based on highly concentrated ceramic binding suspensions (HCBS) of high-alumina chamotte,” Refract. Ind. Ceram., 46(2), 120 – 126 (2004).

    Article  CAS  Google Scholar 

  52. Yu. E. Pivinskii and D. A. Dobrodon, “Fabrication and properties of binders for high-alumina suspensions. 1. HCBS based on bauxite,” Refract. Ind. Ceram., 41(5/6), 205 – 210 (2000).

    Google Scholar 

  53. Z. Ximwer, Dongliang, T. Shougong, et al., “Studying of properties of powders oxide aluminium in silicozole,” J. Chin. Ceram. Soc., 29(1), 263 – 266 (2001).

  54. M. X. Fisher, M. Colic, M. P. Rao, et al., “Effect of silica nanoparticle on the stability of alumina/silica suspension,” J. Am. Ceram. Soc., 84(4), 713 – 718 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Pivinskii.

Additional information

Translated from Novye Ogneupory, No. 9, pp. 20 – 34, September, 2021.

Continuation. Parts 1 – 10 of the article published in Novye Ogneupory Nos. 9 and 11 (2019), Nos. 1, 3, 7 and 9 (2020), and Nos. 1, 5, 6 and 8 (2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivinskii, Y.E., Dyakin, P.V. Cement-Free Refractory Concretes. Part 11. Colloidal-Chemistry Aspect of Technology. Refract Ind Ceram 62, 513–525 (2022). https://doi.org/10.1007/s11148-022-00636-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-022-00636-6

Keywords

Navigation