Skip to main content

Advertisement

Log in

Structure and Mechanical Properties of Hot-Pressed Composite Ceramics W2B5–ZrB2–SiC–B4C

  • Published:
Refractories and Industrial Ceramics Aims and scope

A high-density ceramic material (97% of theoretical density) was obtained by hot pressing of ball-milled powders W2B5, ZrB2, SiC and B4C with holding for 15 minutes at a temperature of 1850°C and a pressure of 30 MPa in an argon atmosphere. The structure and composition of the material were investigated by x-ray diffraction, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Vickers hardness (19.3 GPa), crack resistance coefficient (5,7 MPa∙m1/2) and bending strength (695 MPa) were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. G. Akopov, L. E. Pangilinan, R. Mohammadi, et al., “Perspective: superhard metal borides: a look forward,” APL Mater., 6(7), 070901 (2018).

  2. S. S. Ordanyan, S. V. Vikhman, D. D. Nesmelov, et al., “Nonoxide high-melting point compounds as materials for extreme conditions,” Adv. Sci. Tech., 89, 47 – 56 (2014).

    Article  Google Scholar 

  3. S. S. Ordanyan, D. D. Nesmelov, D. P. Danilovich, and Yu. P. Udalov, “Revisiting the structure of SiC– B4C–MedB2 systems and prospects for the development of composite ceramic materials based on them,” Russ. J. Non-Ferr. Met., 58(5), 545 – 551 (2017).

    Article  Google Scholar 

  4. H. Zhang, Y. Yan, Z. Huang, et al., “Pressureless sintering of ZrB2–SiC ceramics: the effect of B4C content,” Scripta Mater., 60(7), 559 – 562 (2009).

    Article  CAS  Google Scholar 

  5. S. C. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, “Pressureless sintering of ZrB2-SiC ceramics,” J. Am. Ceram. Soc., 91(1), 26 – 32 (2008).

    Article  CAS  Google Scholar 

  6. B. Nayebi, Z. Ahmadi, M. S. Asl, et al., “Influence of vanadium content on the characteristics of spark plasma sintered ZrB2–SiC–V composites,” J. Alloys Compd., 805, 725 – 732 (2019).

    Article  CAS  Google Scholar 

  7. J.Watts, G. Hilmas, and W. G. Fahrenholtz, “Mechanical characterization of ZrB2–SiC composites with varying SiC particle sizes,” J. Am. Ceram. Soc., 94(12), 4410 – 4418 (2011).

    Article  CAS  Google Scholar 

  8. F. Monteverde, “Ultra-high temperature HfB2-SiC ceramics consolidated by hot-pressing and spark plasma sintering,” J. Alloys Compds., 428(1/2), 197 – 205 (2007).

    Article  CAS  Google Scholar 

  9. F. Monteverde and A. Bellosi, “Microstructure and properties of an HfB2–SiC composite for ultra high temperature applications,” Adv. Eng. Mater., 6(5), 331 – 336 (2004).

    Article  CAS  Google Scholar 

  10. R. Licheri, R. Orrù, C. Musa, et al., “Synthesis, densification and characterization of TaB2–SiC composites,” Ceram. Int., 36(3), 937 – 941 (2010).

    Article  CAS  Google Scholar 

  11. H. Zhang, D. D. Jayaseelan, I. Bogomol, et al., “A novel microstructural design to improve the oxidation resistance of ZrB2–SiC ultrahigh temperature ceramics (UHTCs),” J. Alloy Compd., 785, 958 – 964 (2019).

    Article  CAS  Google Scholar 

  12. S. Yamada, K. Hirao, Y. Yamauchi, and S. Kanzaki, “Sintering behavior of B4C–CrB2 ceramics,” J. Mater. Sci. Lett., 21(18), 1445 – 1447 (2002).

    Article  CAS  Google Scholar 

  13. S. Yamada, K. Hirao, Y. Yamauchi, and S. Kanzaki, “Densification behaviour and mechanical properties of pressureless- sintered B4C–CrB2 ceramics,” J. Mater. Sci., 37(23), 5007 – 5012 (2002).

    Article  CAS  Google Scholar 

  14. S. Yamada, K. Hirao, Y. Yamauchi, S. Kanzaki, “B4C–CrB2 composites with improved mechanical properties,” J. Eur. Ceram. Soc., 23(3), 561 – 565 (2003).

    Article  CAS  Google Scholar 

  15. X. Li, D. Jiang, J. Zhang, et al., “Pressureless sintering of boron carbide with Cr3C2 as sintering additive,” J. Eur. Ceram. Soc., 34(5), 1073 – 1081 (2014).

    Article  CAS  Google Scholar 

  16. D. Demirskyi and Y. Sakka, “In situ fabrication of B4C-NbB2 eutectic composites by spark – plasma sintering,” J. Am. Ceram. Soc., 97(8), 2376 – 2378 (2014).

    Article  CAS  Google Scholar 

  17. D. Demirskyi and Y. Sakka, “Fabrication, microstructure and properties of in situ synthesized B4C–NbB2 eutectic composites by spark plasma sintering,” J. Ceram. Soc. Jpn., 123(1433), 33 – 37 (2015).

    Article  Google Scholar 

  18. D. Demirskyi, Y. Sakka, and O. Vasylkiv, “High-strength B4C-TaB2 eutectic composites obtained via in situ by spark plasma sintering,” J. Am. Ceram. Soc., 99(7), 2436 – 2441 (2016).

    Article  CAS  Google Scholar 

  19. D. D. Radev, “Pressureless sintering of boron carbide-based superhard materials,” Sol. St. Phen. — Trans Tech Publications Ltd, 159, 145 – 148 (2010).

    Article  CAS  Google Scholar 

  20. D. Radev, I. Avramova, D. Kovacheva, et al., “Synthesis of boron carbide by reactive-pulsed electric current sintering in the presence of tungsten boride,” Int. J. Applied Ceram. Technol., 13(6), 997 – 1007 (2016).

    Article  CAS  Google Scholar 

  21. O. N. Grigor’ev, G. A. Gogotsi, Y. G. Gogotsi, et al., “Synthesis and properties of ceramics in the SiC–B4C–MeB2 system,” Powder Metall. Met. C., 39(5/6), 239 – 250 (2000).

    Article  Google Scholar 

  22. Yu. P. Udalov, E. E. Valova, and S. S. Ordan’yan, “Preparation and abrasive properties of eutectic compositions in the system B4C–SiC–TiB2,” Refractories, 36(8), 233, 234 (1995).

  23. W. J. Li, R. Tu, and T. Goto, “Preparation of directionally solidified B4C–TiB2–SiC ternary eutectic composites by a floating zone method and their properties,” Mater. Trans., 46(9), 2067 – 2072 (2005).

    Article  CAS  Google Scholar 

  24. A. V. Chalgin, S. V. Vikhman, S. S. Ordan’yan, et al., “Principles of technology and mechanical properties of structural ceramics based on the ternary system SiC–B4C–CrB2,” MRS Proc. Cambridge University Press, 1765, imrc2014 s4a-o015 (2015).

  25. T. V. Kotsar’, D. P. Danilovich, S. S. Ordan’yan, et al., “Combined carbothermal synthesis of powders in the B4C–SiC–TiB2 system,” Refract. Ind. Ceram., 58(2), 174 – 178 (2017).

    Article  Google Scholar 

  26. T. V. Kotsar, D. P. Danilovich, and S. S. Ordan’yan, “Glass-ceramic precursors in B2O3–SiO2MxOy systems (M—Ti, Zr, Cr) as a source for producing fine-dispersed mixtures of high-melting carbides and borides,” Refract. Ind. Ceram., 61(1), 100 – 105 (2020).

    Article  CAS  Google Scholar 

  27. S. P. Yin, Z. H. Zhang, X. W. Cheng, et al., “Spark plasma sintering of B4C–TiB2–SiC composite ceramics using B4C, Ti3SiC2 and Si as starting materials,” Ceram. Int., 44(17), 21626 – 21632 (2018).

    Article  CAS  Google Scholar 

  28. X. Zhang, Z. Zhang, W. Wang, et al., “Microstructure and mechanical properties of B4C–TiB2–SiC composites toughened by composite structural toughening phases,” J. Am. Ceram. Soc., 100(7), 3099 – 3107 (2017).

    Article  CAS  Google Scholar 

  29. Q. He, A.Wang, C. Liu, et al., “Microstructures and mechanical properties of B4C–TiB2–SiC composites fabricated by ball milling and hot pressing,” J. Eur. Ceram. Soc., 38(7), 2832 – 2840 (2018).

    Article  CAS  Google Scholar 

  30. X. Zhang, Z. Zhang, Y. Liu, et al., “High-performance B4C–TiB2–SiC composites with tuneable properties fabricated by reactive hot pressing,” J. Eur. Ceram. Soc., 39(10), 2995 – 3002 (2019).

    Article  CAS  Google Scholar 

  31. Y. Liu, X. Wu, M. Liu, et al., “Microstructure and mechanical properties of B4C–TiB2–SiC composites fabricated by spark plasma sintering,” Ceram. Int., 46(3), 3793 – 3800 (2020).

    Article  CAS  Google Scholar 

  32. R. Tu, N. Li, Q. Li, et al., “Microstructure and mechanical properties of B4C–HfB2–SiC ternary eutectic composites prepared by arc melting,” J. Eur. Ceram. Soc., 36(4), 959 – 966 (2016).

    Article  CAS  Google Scholar 

  33. R. Tu, N. Li, Q. Z. Li, et al., “Preparation of B4C–ZrB2–SiC ternary eutectic composites by arc melting and their properties,” Mater. Res. Innov., 19(sup10), S10-26-S10-29 (2015).

  34. M. Upatov, J. Vleugels, Y. Koval, et al., “Microstructure and mechanical properties of B4C–NbB2–SiC ternary eutectic composites by a crucible-free zone melting method,” J. Eur. Ceram. Soc., 41(2), 1189 – 1196 (2021).

    Article  CAS  Google Scholar 

  35. S. S. Ordan’yan, “On the laws of interaction in systems B4C–MeIV–VIB2,” Neorganicheskie Materialy, No. 5, 15 – 17 (1993).

    Google Scholar 

  36. S. S. Ordan’yan, “Laws of interaction in systems SiC–MeIV–VIB2,” Zh. Prikl. Khim., 66(11), 2439 – 2444 (1993).

    Google Scholar 

  37. S. S. Ordan’yan, S. V. Vikhman, and M. N. Kuznetsov, “The structure of the polythermal section SiC–W2B5 of the B–C–Si–W system,” Ogneup. Tekhn. Keram., No. 12, 2 – 4 (2004).

    Google Scholar 

  38. T. Kumazawa, T. Honda, Y. Zhou, et al., “Pressureless sintering of boron carbide ceramics,” J. Ceram. Soc. Jpn., 116(1360), 1319 – 1321 (2008).

    Article  CAS  Google Scholar 

  39. V. V. Skorokhod, “Processing, microstructure, and mechanical properties of B4C-TiB2 particulate sintered composites. Part I. Pressureless sintering and microstructure evolution,” Powder Metall. Met. C., 39(7/8), 414 – 423 (2000).

    Article  CAS  Google Scholar 

  40. Properties, Production and Application of Refractory Compounds [in Russian], ed. T. Ya. Kosolapova, Metallurgiya, Moscow (1986) 928 p.

  41. M. Frotscher,W. Klein, J. Bauer, et al., “M2B5 or M2B4? Areinvestigation of the Mo/B and W/B system,” Z. Anorg. Allg. Chem., 633(15), 2626 – 2630 (2007).

    Article  CAS  Google Scholar 

  42. Y. Liang, X. Yuan, and W. Zhang, “Thermodynamic identification of tungsten borides,” Phys. Rev. B., 83(22), Article No. 220102 (2011).

  43. S. S. Ordan’yan, A. A. Boldin, E. V. Prilutskiy, “Phase equilibria in the B4C–W2B5 system,” Zh. Prikl. Khim., 73(12), 2128 – 2130 (2000).

    Google Scholar 

  44. S. S. Ordan’yan, A. A. Boldin, S. S. Suvorov, et al., “Phase diagram of the W2B5–ZrB2 system,” Inorg. Mater., 41(3), 232 – 234 (2005).

    Article  Google Scholar 

  45. S. S. Ordan’yan, D. D. Nesmelov, and S. V. Vikhman, “The system SiC–W2B5–LaB6,” Refract. Ind. Ceram., 50(5), 391 – 393 (2009).

    Article  Google Scholar 

  46. Y. Udalov and Y. Morozov, “The program of calculation of fusibility curves of triple systems DIATRIS 1.2 (Algorithm, interface, and technical application),” 6th Int. School-Conf. “Phase diagrams in materials science”, p. 58, 59 (2001).

Download references

This work was financed by the Russian Science Foundation grant No. 19-73-10180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Nesmelov.

Additional information

Translated from Novye Ogneupory, No. 4, pp. 27 – 33, April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesmelov, D.D., Ordan’yan, S.S. & Udalov, Y.P. Structure and Mechanical Properties of Hot-Pressed Composite Ceramics W2B5–ZrB2–SiC–B4C. Refract Ind Ceram 62, 202–207 (2021). https://doi.org/10.1007/s11148-021-00583-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-021-00583-8

Keywords

Navigation