Skip to main content
Log in

Influence of Nanosized Titanium Carbide on the Synthesis, Structure, and Properties of a Composite Material Based on Titanium Carbosilicide

  • Published:
Refractories and Industrial Ceramics Aims and scope

The influence of the content of nanosized titanium carbide on the density, phase transformations, microstructure, hardness, and wear resistance of a Ti3SiC2/TiC composite obtained by spark-plasma sintering was investigated. The content of TiC nanoparticles varied in the range 0 – 4 wt.%. Composites with 1 wt.% of added nanosized TiC were shown to have higher wear resistance than those that did not contain TiC nanoparticles or had a content >1 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. M. W. Barsoum, “The M(N+1)AX(N) phases: a new class of solids: Thermodynamically stable nanolaminates,” Prog. Solid State Chem., 28, 201 – 281 (2000); DOI: https://doi.org/10.1016/S0079-6786(00)00006-6.

    Article  CAS  Google Scholar 

  2. Z. M. Sun, “Progress in research and development on MAX phases: A family of layered ternary compounds,” Int. Mater. Rev., 56(3), 143 (2011); DOI: https://doi.org/10.1179/1743280410Y.0000000001.

    Article  CAS  Google Scholar 

  3. X. Ji, Z. Yi, D. Zhang, K. Wu, F. Chang, C. Li, H. Tang, and H. Song, “Synthesis, characterization and tribological properties of High purity Ti3SiC2 nanolamellas,” Ceram. Int., 40, 6219 – 6224 (2014); DOI: https://doi.org/10.1016/j.ceramint.2013.11.077.

    Article  CAS  Google Scholar 

  4. X. Shi, M. Wang, W. Zhai, Z. Xu, Q. Zhang, and Y. Chen, “Influence of Ti3SiC2 content on tribological properties of NiAl matrix self-lubricating composites,” Mater. Des., 55, 93 – 103 (2014); DOI: https://doi.org/10.1016/j.matdes.2012.08.060.

    Article  CAS  Google Scholar 

  5. J. Zhang, W. Liu, Y. Jin, S. Wu, T. Hu, Y. Li, and X. Xiao, “Study of the interfacial reaction between Ti3SiC2 particles and Al matrix,” J. Alloys Compd., 738, 1 – 9 (2018); DOI: https://doi.org/10.1016/j.jallcom.2017.12.123.

    Article  CAS  Google Scholar 

  6. F. AlAnazi, S. Ghosh, R. Dunnigan, and S. Gupta, “Synthesis and tribological behavior of novel Ag- and Bi-based composites reinforced with Ti3SiC2,” Wear, 376 – 377, 1074 – 1083 (2017); DOI: https://doi.org/10.1016/j.wear.2017.01.107.

  7. X. Jiang, W. Liu, Y. Li, et al., “Microstructures and mechanical properties of Cu/Ti3SiC2/C/graphene nanocomposites prepared by vacuum hot-pressing sintering and hot isostatic pressing,” Composites, Part B, 141, 203 – 213 (2018); DOI: https://doi.org/10.1016/j.compositesb.2017.12.050.

    Article  CAS  Google Scholar 

  8. S. Gupta and M. W. Barsoum, “On the tribology of the MAX phases and their composites during dry sliding: A review,” Wear, 271, 1878 – 1894 (2011); DOI: https://doi.org/10.1016/j.wear.2011.01.043.

    Article  CAS  Google Scholar 

  9. G. C.Wei and P. F. Becher, “Improvement in mechanical properties in SiC by the addition of TiC particles,” J. Am. Ceram. Soc., 67, 571 – 574 (1984).

    Article  CAS  Google Scholar 

  10. L. J.Wang,W. Jiang, L. D. Chen, and S. Q. Bai, “Rapid reactive synthesis and sintering of submicron TiC/SiC composites through spark plasma sintering,” J. Am. Ceram. Soc., 87, 1157 – 1160 (2004); DOI: https://doi.org/10.1111/j.1551-2916.2004.01157.x.

    Article  CAS  Google Scholar 

  11. W. J. J. Wakelkamp, F. J. van Loo, and R. Metselaar, “Phase relations in the Ti–Si–C system,” J. Eur. Ceram. Soc., 8, 135 (1991); DOI: https://doi.org/10.1016/0955-2219(91)90067-A.

    Article  CAS  Google Scholar 

  12. H. O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, Noyes Publications, Westwood, NJ, USA,1996.

    Google Scholar 

  13. Y. C. Zhou, Z. M. Sun, and B. H. Yu, “Microstructure of Ti3SiC2 prepared by the in-situ hot pressing/solid–liquid reaction process,” Z. Metallkd., 91, 937 – 941 (2000).

    CAS  Google Scholar 

  14. W. Tian, Z. Sun, H. Hashimoto, and Y. Du, “Synthesis, microstructure and mechanical properties of Ti3SiC2–TiC composites pulse discharge sintered from Ti/Si/TiC powder mixture,” Mater. Sci. Eng., A, 526, 16 – 21 (2009); DOI: https://doi.org/10.1016/j.msea.2009.08.029.

    Article  CAS  Google Scholar 

  15. N. C. Ghosh and S. P. Harimkar, “Microstructure and wear behavior of spark plasma sintered Ti3SiC2 and Ti3SiC2–TiC composites,” Ceram. Int., 39, 4597 – 4607 (2013); DOI: https://doi.org/10.1016/j.ceramint.2012.11.058.

    Article  CAS  Google Scholar 

  16. V. B. Kul’met’eva, “Production of powder of titanium carbide,” Ogneupory Tekh. Keram., No. 7, 23 – 26 (2004).

    Google Scholar 

  17. M. N. Kachenyuk, V. G. Gilev, and A. A. Smetkin, “Effect of mechanical activation on a mixture for synthesizing titanium silicon carbide,” Refract. Ind. Ceram., 59, 257 (2018); DOI: https://doi.org/10.1007/s11148-018-0218-0.

    Article  CAS  Google Scholar 

  18. V. N. Antsiferov, M. N. Kachenyuk, and A. A. Smetkin, “Features of compaction and phase formation in the Ti–Si–C system during plasma-arc sintering,” Refract. Ind. Ceram., 56(2), 168 – 171 (2015); DOI: https://doi.org/10.1007/s11148-015-9806-4.

    Article  CAS  Google Scholar 

  19. G. R. Anstis, P. Chantikul, B. R. Lawn, et al., “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” J. Am. Ceram. Soc., 64(9), 533 – 538 (1981); DOI: https://doi.org/10.1111/j.1151-2916.1981.tb10320.x.

    Article  CAS  Google Scholar 

  20. H. Hashimoto, Z. M. Sun, and S. Tada, “Morphological evolution during reaction sintering of Ti, SiC and C powder blend,” J. Alloys Compd., 441(1 – 2), 174 – 180 (2007); DOI: https://doi.org/10.1016/j.jallcom.2006.08.339.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Smetkin.

Additional information

Translated from Novye Ogneupory, No. 10, pp. 46 – 51, October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachenyuk, M.N., Kulmetyeva, V.B. & Smetkin, A.A. Influence of Nanosized Titanium Carbide on the Synthesis, Structure, and Properties of a Composite Material Based on Titanium Carbosilicide. Refract Ind Ceram 61, 587–591 (2021). https://doi.org/10.1007/s11148-021-00524-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-021-00524-5

Keywords

Navigation