Skip to main content
Log in

Evaluation of the Crack Resistance of Reactive Sintered Composite Boron Carbide-Based Materials

  • Published:
Refractories and Industrial Ceramics Aims and scope

The results of studying the crack resistance of reaction-sintered B4C–SiC composite materials impregnated with liquid silicon with identification and fracture methods are presented. With an increase in the amount of B4C in the reaction-sintered material, its fragility increases. The crack resistance of the material can be increased from 3.40 to 4.02 MPa·m1/2 (when tested by different methods) by adding to the composite material up to 30 wt.% SiC. The material is destroyed mainly by the intercrystalline (intergranular) mechanism. Ceramics containing more than 90 wt.% B4C, is partially destroyed by the transcrystalline mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. S. N. Perevislov, P. V. Shcherbak, M. V. Tomkovich, “High-density boron carbide ceramics,” Refract. Ind. Ceram., 59(1), 32 – 36 (2018).

    Article  CAS  Google Scholar 

  2. N. Cho, Z. Bao, and R. F. Speyer, “Density- and hardness-optimized pressureless sintered and post-hot isostatic pressed B4C,” J. Mater. Res., 20(8), 2110 – 2116 (2005).

    Article  CAS  Google Scholar 

  3. X. Du, Z. Zhang, Y. Wang, et al., “Hot-pressing kinetics and densification mechanisms of boron carbide,” J. Am. Ceram. Soc., 98(5), 1400 – 1406 (2015).

    Article  CAS  Google Scholar 

  4. S. Hayun, N. Frage, M. P. Dariel, et al., “Dynamic response of B4C –SiC ceramic composites,” Ceramic Armor and Armor Systems II, 178, 147 – 156 (2006).

    CAS  Google Scholar 

  5. C. P. Zhang, H. Q. Rue, X. Y. Yue, andW. Wang, “Studies on the RBBC ceramics fabricated by reaction bonded SiC,” Rare Metal Mat. Eng., 40, 536 – 539 (2011).

  6. N. A. Golubeva, L. A. Plyasunkova, I. Yu. Kelina, et al., “Study of reaction-bonded boron carbide properties,” Refract. Ind. Ceram., 55(5), 414 – 418 (2015).

    Article  CAS  Google Scholar 

  7. M. P. Dariel and N. Frage, “Reaction bonded boron carbide: recent developments,” Adv. Appl. Ceram., 111(5/6), 301 – 310 (2012).

    Article  CAS  Google Scholar 

  8. S. N. Perevislov, P. V. Shcherbak, and M. V. Tomkovich, “Phase composition and microstructure of reaction-bonded boron-carbide materials,” Refract. Ind. Ceram., 59(2), 179 – 183 (2018).

    Article  CAS  Google Scholar 

  9. Y. Wang, S. Tan, and D. Jiang, “The effect of porous carbon preform and the infiltration process on the properties of reaction-formed SiC,” Carbon, 42(8), 1833 – 1839 (2004).

    Article  CAS  Google Scholar 

  10. J. C. Margiotta, D. Zhang, D. C. Nagle, and C. E. Feeser, “Formation of dense silicon carbide by liquid silicon infiltration of carbon with engineered structure,” J. Mater. Res., 23(5), 1237 – 1248 (2008).

    Article  CAS  Google Scholar 

  11. P. Barick, D. C. Jana, and N. Thiyagarajan, “Effect of particle size on the mechanical properties of reaction bonded boron carbide ceramics,” Ceram. Int., 39(1), 763 – 770 (2013).

    Article  CAS  Google Scholar 

  12. C. Zhang, H. Ru, H. Zong, et al., “Coarsening of boron carbide grains during the infiltration of porous boron carbide preforms by molten silicon,” Ceram. Int., 42(16), 18681 – 18691 (2016).

    Article  CAS  Google Scholar 

  13. L. Sun, D. Ma, L. Wang, et al., “Determining indentation fracture toughness of ceramics by finite element method using virtual crack closure technique,” Eng. Fract. Mech., 197(6), 151 – 159 (2018).

    Article  Google Scholar 

  14. F. Dai, R. Chen, and K. Xia, “A semi-circular bend technique for determining dynamic fracture toughness,” Exp. Mech., 50(6), 783 – 791 (2010).

    Article  Google Scholar 

  15. A. Moradkhani, H. Baharvandi, M. Tajdari, H. Latifi, and J. Martikainen, “Determination of fracture toughness using the area of micro-crack tracks left in brittle materials by Vickers indentation test,” J. Adv. Ceram., 2(1), 87 – 102 (2013).

    Article  CAS  Google Scholar 

  16. S. N. Perevislov, A. S. Lysenkov, and S. V. Vikhman, “Effect of Si additions on the microstructure and mechanical properties of hot-pressed B4C,” Inorg. Mater., 53(4), 376 – 380 (2017).

    Article  CAS  Google Scholar 

  17. X. Li, D. Jiang, J. Zhang, et al., “Reaction-bonded B4C with high hardness,” Int. J. Appl. Ceram. Tech., 13(3), 584 – 592 (2016).

    Article  Google Scholar 

  18. S. Hayun, A. Weizmann, M. P. Dariel, and N. Frage, “The effect of particle size distribution on the microstructure and the mechanical properties of boron carbide-based reaction-bonded composites,” Int. J. Appl. Ceram. Tech., 6(4), 492 – 500 (2009).

    Article  CAS  Google Scholar 

  19. D. D. Nesmelov and S. N. Perevislov, “Reaction sintered materials based on boron carbide and silicon carbide,” Glass Ceram., 71(9/10), 313 – 319 (2015).

    Article  CAS  Google Scholar 

  20. N. Frage, L. Levin, and M. P. Dariel, “The effect of the sintering atmosphere on the densification of B4C ceramics,” J. Solid State Chem., 177(2), 410 – 414 (2004).

    Article  CAS  Google Scholar 

  21. S. Hayun, A. Weizmann, H. Dilman, et al., “Rim region growth and its composition in reaction bonded boron carbide composites with core-rim structure,” J. Phys.: Conference Series, IOP Publishing, 176(1), 1 – 7 (2009).

    Google Scholar 

  22. D. Mallick, T. K. Kayal, J. Ghosh, et al., “Development of multi-phase B–Si–C ceramic composite by reaction sintering,” Ceram. Int., 35(4), 1667 – 1669 (2009).

    Article  CAS  Google Scholar 

  23. S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Glass Ceram., 73(7/8), 249 – 252 (2016).

    Article  CAS  Google Scholar 

  24. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, M. V. Tomkovich, “Hot-pressed ceramic SiC–YAG materials,” Inorg. Mater., 53(2), 206 – 211 (2017).

    Article  Google Scholar 

  25. S. Xu, G. Qiao, D. Li, et al., “Reaction forming of silicon carbide ceramic using phenolic resin derived porous carbon preform,” J. Eur. Ceram. Soc., 29(11), 2395 – 2402 (2009).

    Article  CAS  Google Scholar 

  26. J. H. Chae, J. S. Park, J. P. Ahn, and K. H. Kim, “Mechanical properties of B4C ceramics fabricated by a hot-press sintering,” J. Korean Ceram. Soc., 46(1), 81 – 85 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Additional information

Translated from Novye Ogneupory, No. 3, pp. 49 – 54, March 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N. Evaluation of the Crack Resistance of Reactive Sintered Composite Boron Carbide-Based Materials. Refract Ind Ceram 60, 168–173 (2019). https://doi.org/10.1007/s11148-019-00330-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-019-00330-0

Keywords

Navigation