Refractories and Industrial Ceramics

, Volume 60, Issue 1, pp 115–119 | Cite as

Genesis of Ecotechnology Efficiency in the Production of Dust-Forming Materials

  • V. N. Makarov
  • S. Ya. DavydovEmail author
  • N. V. Makarov

Amathematical model of vortex hydraulic dust suppression is proposed. Equations for calculating the magnitude of the reduction in the required energy for total absorption of dust particles, the effective wetting angle, and the minimum diameter of the absorbed dust particles as a function of the angular of liquid droplet rotation velocity are obtained. It is shown that vortex hydraulic dust suppression significantly reduces the size of the dispersed dust composition, water consumption, and increases the efficiency of dust suppression.


ecotechnology in the building materials industry dust suppression coagulation hydrophobicity circulation wetting angle 


  1. 1.
    S. Ya. Davydov, S. V. Belov, and T. N. Cheremisina, “Dust formation and a solution for dust collection during economic mineral processing in quarries,” Refract. Indust. Ceram., 57(3), 234 – 238 (2016).CrossRefGoogle Scholar
  2. 2.
    S. Ya. Davydov, V. P’yachev, I. D. Kashcheev, et al., Building Material Enterprise Rotary Furnaces: Handbook [in Russian], UGTU-UPI, Ekaterinburg (2006).Google Scholar
  3. 3.
    S. Ya. Davydov and A. N. Semin, Energy Saving Equipment for Pneumatic Transport: Yesterday, Today, Tomorrow: Theory, calculation, Research, Production [in Russian], Fond Kadrovyi Rezerv, Moscow (2016).Google Scholar
  4. 4.
    V. N. Makarov and S. Ya. Davydov, “Theoretical basis for increasing ventilation efficiency in technological processes at industrial enterprises,” Refract. Indust. Ceram., 56(1), 103 – 106 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Ya. Davydov, Energy Saving Equipment for Transporting Loose Materials: Research, Development, Manufacture [in Russian], GOI VPO UGTU-UPI, Ekaterinburg (2007).Google Scholar
  6. 6.
    V. P. Zhuravlev, V. I. Saranchuk, I. A. Strakhov, et al., Modeling and Planning Dust Suppression Systems [in Russian], Naukova Dumka, Kiev (1990).Google Scholar
  7. 7.
    A. V. Frolov, V. A. Teregin, and Yu. A. Sechkerev, “Bases of hydraulic dust suppression,” Bezopas. Zhizn., No. 10, 1 – 24 (2007).Google Scholar
  8. 8.
    V. I. Saranchuk, V. P. kachan, V. V. Rekun, et al., Physicochemical Bases of Hydraulic Dust Suppression and Prevention of Coal Dust Explosion [in Russian], Naukova Dumka, Kiev (1984).Google Scholar
  9. 9.
    A. D. Zimon, Liquid Adhesion and Wetting [in Russian], Khimiya, Moscow (1976).Google Scholar
  10. 10.
    V. N. Makarov, V. A. Gorshenko, and V. A. Volegzhanin, “Mathematical modeling of active control of shaft centrifugal fan aerodynamics,” Gorn. Inf. Anal. Byull., No. 4, 39 – 45 (2016).Google Scholar
  11. 11.
    N. V. Makarov and V. N. Makarov, RF Patent 2601495, Method for creating a lifting force and device for its accomplishment, Claim 06.22.15, Publ. 11.10.16, Bull. No. 31.Google Scholar
  12. 12.
    I. L. Loitsyanskii, Liquid and Gas Mechanics [in Russian], Nauka, Moscow (1976).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. N. Makarov
    • 1
  • S. Ya. Davydov
    • 1
    Email author
  • N. V. Makarov
    • 1
  1. 1.FGBOU VO Ural State Mining UniversityEkaterinburgRussia

Personalised recommendations