Refractories and Industrial Ceramics

, Volume 60, Issue 1, pp 109–114 | Cite as

Solid Solutions Ca12Al14O33±δ: V5+, Mo5+

  • A. S. TolkachevaEmail author
  • S. N. Shkerin
  • S. V. Plaksin
  • A. A. Pankratov
  • N. I. Moskalenko

Solid solutions of composition Ca12-x(Al14Vx)O33+δ (0 ≤ x ≤ 0.07) were synthesized. The V oxidation state in the solid solution was found using a combination of methods. The principle for filling mayenite crystallographic positions with dopant proposed that V cations replace a few Al positions, presumably in octahedral coordination. The temperature dependence of Ca11.93(Al14V0.07)O33+δ electrical conductivity was studied by impedance spectroscopy. The electrical conductivity of V-doped mayenite was shown to increase by an order of magnitude.


impedance spectroscopy solid solution mayenite Ca12Al14O33 



The work used equipment at the Composition of Matter Common Use Center at the Institute of High-Temperature Electrochemistry, UrB, RAS. We thank D. G. Kellerman and E. V. Zabolotskaya, staff members of the Laboratory of Quantum Chemistry and Spectroscopy, Institute of Solid-State Chemistry, UrB, RAS, for assistance with certifying the samples using magnetochemistry and EPR. The work was financially supported by RFBR No. 17-03-01280.


  1. 1.
    M. Nishioka, H. Nanjyo, S. Hamakawa, et al., “O emission from 12CaO·7Al2O3 and MSZ composite and its application for silicon oxidation,” Solid State Ionics, 177, 2235 – 2239 (2006).CrossRefGoogle Scholar
  2. 2.
    A. Ranjbar and M. Rezaei, “Dry reforming reaction over nickel catalysts supported on nanocrystalline calcium aluminates with different CaO/Al2O3 ratios,” J. Nat. Gas Chem., 21, 178 – 183 (2012).CrossRefGoogle Scholar
  3. 3.
    E. Feizi, “12CaO·7Al2O3 ceramic: A review of the electronic and optoelectronic applications in display devices,” J. Disp. Technol., 12(5), 451 – 459 (2016).CrossRefGoogle Scholar
  4. 4.
    I. D. Kashcheev, K. K. Strelov, and P. S. Mamykin, Refractory Chemical Technology [in Russian], Intermet Inzhiniring, Moscow, 2007, 752 pp.Google Scholar
  5. 5.
    M. Dulski, K. M. Marzec, J. Kusz, et al., “Different route of hydroxide incorporation and thermal stability of new type of water clathrate: x-ray single crystal and Raman investigation,” Sci. Rep., No. 7 (2017); DOI:
  6. 6.
    K. Hayashi, N. Ueda, M. Hirano, and H. Hosono, “Effect of stability and diffusivity of extra-framework oxygen species on the formation of oxygen radicals in 12CaO·7Al2O3,” Solid State Ionics, 173(1/4), 89 – 94 (2004).CrossRefGoogle Scholar
  7. 7.
    F. Gfeller, “Mayenite Ca12Al14O32[X2–]: From minerals to the first stable electride crystals,” in: Highlights in Mineralogical Crystallography, T. Armbruster and R. M. Danisi (eds.), Walter de Gruyter GmbH, Berlin/Boston (2016), pp. 169 – 190.Google Scholar
  8. 8.
    H. Hosono, K. Hayashi, K. Kajihara, P. V. Sushko, and A. L. Shluger, “Oxygen ion conduction in 12CaO·7Al2O3: O2– conduction mechanism and possibility of O fast conduction,” Solid State Ionics, 180(6 – 8), 550 – 555 (2009).CrossRefGoogle Scholar
  9. 9.
    M. Lacerda, J. T. S. Irvine, F. P. Glasser, and A. R. West, “High oxide ion conductivity in Ca12Al14O33,” Nature, 332(7), 525 – 526 (1988).CrossRefGoogle Scholar
  10. 10.
    S. N. Shkerin, A. S. Tolkacheva, V. R. Khrustov, and A. V. Kuz’-min, “Dilatometric study of a strontium ferrotitanate and calcium aluminate,” Neorg. Mater., 52(1), 31 – 34 (2016).CrossRefGoogle Scholar
  11. 11.
    J. Shen, L. Gong, and Q.-X. Li, “Structure and antibacterial property of Na2O doped C12A7,” Chin. J. Inorg. Chem., No. 2, 353 – 360 (2011).Google Scholar
  12. 12.
    S. Ning, J. Shen, X.-L. Li, Y. Xu, and Q.-X. Li, “Characterization and anion emission characteristics of the microporous crystal Cs-C12A7,” Acta Phys.-Chim. Sin., 27(4), 983 – 989 (2011).Google Scholar
  13. 13.
    A. Gao, H.-J. Wang, J. Tu, and Q.-X. Li, “Effect of H2O on NO reduction over NSR catalyst 12CaO–7Al2O3/10% K,” Chin. J. Chem. Phys., No. 6, 555 – 558 (2006).Google Scholar
  14. 14.
    S. Fujita, K. Suzuki, M. Ohkawa, et al., “Oxidative destruction of hydrocarbons on a new zeolite-like crystal of Ca12Al10Si4O35 including O2– and \( {\mathrm{O}}_2^{2-} \) radicals,” Chem. Mater., 15, 255 – 263 (2003).Google Scholar
  15. 15.
    J. T. S. Irvine and A. R. West, “Ca12Al14O33 solid electrolytes doped with zinc and phosphorus,” Solid State Ionics, 40/41, 896 – 899 (1990).Google Scholar
  16. 16.
    M. Teusner, R. A. De Souza, H. Krause, et al., “Oxygen transport in undoped and doped mayenite,” Solid State Ionics, 284, 25 – 27 (2016).CrossRefGoogle Scholar
  17. 17.
    D. C. A. Schmidt, “Synthese und Charakterisierung substituierter Mayenitphasen,” Master’s Thesis, Technische Universitat Berlin, 2014, 182 pp.Google Scholar
  18. 18.
    A. N. Christensen, “Neutron powder diffraction profile refinement studies on Ca11.3Al14O32.3 and CaClO(D0.88H0.12),” Acta Chem. Scand., Ser. A., 41(2), 110 – 112 (1987).CrossRefGoogle Scholar
  19. 19.
    A. S. Tokacheva, “Mayenite: Synthesis, structure, and region of existence,” Candidate Dissertation, Ekaterinburg, 2013, 102 pp.Google Scholar
  20. 20.
    J. Qi, G. Ning, and Y. Zhao, “Synthesis and characterization of V2O3 microcrystal particles controlled by thermodynamic parameters,” Mater. Sci.-Pol., 28(2), 535 – 543 (2010).Google Scholar
  21. 21.
    M. Ruszak, S. Witkowski, and Z. Sojka, “EPR and Raman investigations into anionic redox chemistry of nanoporous 12CaO·7Al2O3 interacting with O2, H2 and N2O,” Res. Chem. Intermed., 33(8/9), 689 – 693 (2007).Google Scholar
  22. 22.
    R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., No. 32, 751 – 767 (1976).Google Scholar
  23. 23.
    H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): Ahigh-temperature neutron powder diffraction study,” Acta Crystallogr., Sect. B: Struct. Sci., 63, 675 – 682 (2007).CrossRefGoogle Scholar
  24. 24.
    M. Kilo, S. Swaroop, and M. Lerch, “Oxygen uptake and diffusion in mayenite,” Defect Diffus. Forum, 289 – 292, 511 – 516 (2009).Google Scholar
  25. 25.
    D.-H. Lee, L. Kogel, S. G. Ebbinghaus, et al., “Defect chemistry of the cage compound, Ca12Al14O33-δ—understanding the route from a solid electrolyte to a semiconductor and electride,” Phys. Chem. Chem. Phys., 11, 3105 – 3114 (2009).CrossRefGoogle Scholar
  26. 26.
    J. T. S. Irvine, M. Lacerda, and A. R. West, “Oxide ion conductivity in Ca12Al14O33,” Mater. Res. Bull., 23(7), 1033 – 1038 (1988).CrossRefGoogle Scholar
  27. 27.
    S. N. Shkerin, A. S. Tolkacheva, A. V. Nikonov, and N. B. Pavzderin, “Impedance spectroscopy of cell with Pt electrodes on oxygen-conducting material with mayenite-related structure,” Ionics, 23(8), 2153 – 2160 (2017).CrossRefGoogle Scholar
  28. 28.
    A. S. Tolkacheva, S. N. Shkerin, S. V. Plaksin, et al., “Synthesis of dense ceramics of single-phase mayenite (Ca12Al14O32)O,” Zh. Prikl. Khim., 84(6), 881 – 886 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. S. Tolkacheva
    • 1
    • 2
    Email author
  • S. N. Shkerin
    • 1
  • S. V. Plaksin
    • 1
  • A. A. Pankratov
    • 1
  • N. I. Moskalenko
    • 1
  1. 1.Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of SciencesEkaterinburgRussia
  2. 2.Institute of New Materials and TechnologiesUral Federal UniversityEkaterinburgRussia

Personalised recommendations