Refractories and Industrial Ceramics

, Volume 60, Issue 1, pp 33–42 | Cite as

Aluminum Oxide and Alumina Ceramics (Review). Part 2. Foreign Manufacturers of Alumina Ceramics. Technologies and Research in the Field of Alumina Ceramics1

  • A. M. AbyzovEmail author

This paper contains information on foreign manufacturers of alumina ceramics, and mainly, fine technical ceramics. The data concerning mechanical, thermal, and dielectric properties of the products manufactured by different companies are presented. Several methods for producing Al2O3-based ceramics are considered with respect to future commercial production.


aluminum oxide alumina ceramics production alumina ceramics manufacturers 


This study was performed within the scope of the state assignment No. 10.8003.2017/8.9 of the Ministry of Education and Science of the Russian Federation.

(To be continued)


  1. 29.
    A. M. Abyzov, Aluminum oxide and alumina ceramics (Review). Part 1. Properties of Al2O3 and commercial production of dispersed Al2O3, A. M. Abyzov, Novye Orneupory, No. 1, 16 – 23 (2019).Google Scholar
  2. 30.
    R. H. Hussey, Advanced technical ceramics directory and databook, R. H. Hussey and J. Wilson, L.: Chapman and Hall (1998), 506 p.Google Scholar
  3. 31.
    CoorsTec. Advanced alumina, [Electronic resource], available at:
  4. 32.
    Morgan Technical Ceramics. Alumina Ceramics (Al2O3), [Electronic resource], available at:
  5. 33.
    MatWeb, [Electronic resource], available at:
  6. 34.
    CeramTec. Ceramic materials, [Electronic resource], available at:
  7. 35.
    CeramTec. ZTA alumina zirconia platelet composite, [Electronic resource], available at:
  8. 36.
    M. Kuntz, The effect of microstructure and chromia content on the properties of zirconia toughened alumina, M. Kuntz and R. Krüger, Ceram. Int., 44, 2011 – 2020 (2018).Google Scholar
  9. 37.
    Kyocera. Characteristics of Kyocera fine ceramics, [Electronic resource], available at:
  10. 38.
    Kyocera. Single crystal sapphire, [Electronic resource], available at:
  11. 39.
    Dynamic Ceramic. Material Properties, [Electronic resource], available at:
  12. 40.
    Superior Technical ceramics. Materials property chart, [Electronic resource], available at:
  13. 41.
    Superior Technical Ceramics. High purity alumina ceramics, [Electronic resource], available at: https://www.ceramics. net/sites/default/files/purealuminawhitepaperfa.pdf.
  14. 42.
    Superior Technical Ceramics. Zirconia-toughened alumina, [Electronic resource], available at:
  15. 43.
    Ortech Advanced Ceramics. Alumina oxide ceramics Al2O3, [Electronic resource], available at: http://www.ortechceramics. com/creamic-materials/aluminaceramics/.
  16. 44.
    Materion. Duroxalumina ceramics, [Electronic resource], available at:
  17. 45.
    3M™ Nextel™ ceramic fibers and textiles. Technical reference guide, [Electronic resource], available at:
  18. 46.
    Handbook of Ceramic Composites; ed. by N. P. Bansal, Kluwer Academic Publishers, Boston, Dordrecht, London (2005), 558 p.Google Scholar
  19. 47.
    I. M. Afanasov, High-temperature ceramic fibers, I. M. Afanasov and B. I. Lazoryak, Lomonosov Moscow State University, Moscow (2010), 51_p.
  20. 48.
    E. S. Lukin, New ceramic materials based on aluminum oxide, E. S. Lukin, N. A. Makarov, I. V. Dodonova, et al., Refractories and Industrial Ceramics, 42(7/8), 261 – 268 (2001). DOI:].
  21. 49.
    E. R. Dobrovinskaya, Sapphire: material, manufacturing, applications, E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Springer, Boston (2009), 480 p.Google Scholar
  22. 50.
    E. S. Lukin, Modern oxide ceramics and its application fields, E. S. Lukin, N. A. Makarov, A. I. Kozlov, et al., Konstruktsii iz Kompozitsionnykh Materialov, No._1, 3 – 13 (2007).
  23. 51.
    NTK Cutting Tools. General catalog. Vol. 4, [Electronic resource], available at:
  24. 52.
    Ceramic cutting tools. Materials, development, and performance; ed. by E. D. Whitney, Noyes Publications, Park Ridge (1994), 357 p.Google Scholar
  25. 53.
    A. P. Garshin, Ceramics for machine building, A. P. Garshin, V. M. Gropyanov, G. P. Zaytsev, and S. S. Semyonov, Nauchtekhlitizdat, Moscow (2003), 384 p.Google Scholar
  26. 54.
    Sandvik Coromant. Ceramics for smart and productive machining of super alloys, [Electronic resource], available at:
  27. 55.
    CeramTec. Oxide Ceramics for Machining Applications, [Electronic resource], available at:
  28. 56.
    Greenleaf. Metalcutting tools and systems. Inserts — ceramic, [Electronic resource], available at:
  29. 57.
    J. Wang, Zirconia-toughened alumina (ZTA) ceramics, J. Wang and R. Stevens, J. Mater. Sci., 24(10), 3421 – 3440 (1989).Google Scholar
  30. 58.
    S. Bhaduri, Auto ignition synthesis and consolidation of Al2O3–ZrO2 nano/nano composite powders, S. Bhaduri, S. B. Bhaduri, and E. Zhou, J. Mater. Res., 13, 1, 156 – 165 (1998).Google Scholar
  31. 59.
    A. V. Galakhov, Powder compact structure. Part 1. Particle packing inhomogeneity, A. V. Galakhov, Refract. Ind. Ceram., 55(3), 199 – 208 (2014).CrossRefGoogle Scholar
  32. 60.
    A. V. Galakhov, Powder compact structure. Part 2. Methods for increasing particle packing uniformity, A. V. Galakhov, Refract. Ind. Ceram., 55(3), 209 – 219 (2014).CrossRefGoogle Scholar
  33. 61.
    Fraunhofer Institute for Ceramic Technologies and Systems (IKTS). Materials Synthesis and Development Group, [Electronic resource], available at:
  34. 62.
    A. S. A. Chinelatto, Mechanisms of microstructure control in conventional sintering, A. S. A. Chinelatto, E. M. de Jesus Agnolon Pallone, A. M. de Souza, et al., Sintering of Ceramics— New Emerging Techniques; ed. by A. Lakshmanan, Rijeka: In Tech, Ch. 18, 401 – 422 (2012).Google Scholar
  35. 63.
    AluChem. Product Data Sheets, [Electronic resource], available at:
  36. 64.
    V. A. Poluboyarov, Obtaining ultra-micro-heterogeneous particles by mechanical treatment, V. A. Poluboyarov, Z. A. Korotayeva, and O. V. Andryushkova, Inorganic materials, 37(5), 592 – 595 (2001).CrossRefGoogle Scholar
  37. 65.
    M. N. Rahaman, Ceramic Processing and Sintering, M. N. Rahman, 2nd ed., CRC Press, Boca Raton (2003), 875 p.Google Scholar
  38. 66.
    Thanakorn Inter Supply Co. Abrasive Raw Materials, [Electronic resource], available at:
  39. 67.
    Z. I. Kremen, Polishing technology in machine building, Z. I. Kremen, V. G. Yuryev, and A. F. Baboshkin, Polytekhnika, St. Petersburg (2007), p. 12.Google Scholar
  40. 68.
    Composite Materials Handbook, Vol. 5. Ceramic matrix composites, U. S. Department of Defence, MILHDBK-17-5, 56 – 61 (2002).Google Scholar
  41. 69.
    T. A. Khabas, Metal nanopowders in ceramic technology, T. A. Khabas, Tomsk Polytechnic Institute, Tomsk (2009), 230 p.Google Scholar
  42. 70.
    J.-K. Guo, Advanced ceramic materials, J.-K. Guo, J. Li, and H.-M. Kou, Modern Inorganic Synthetic Chemistry; ed. by R. Xu and Y. Xu; 2nd ed., Elsevier, Amsterdam, Ch. 17, 463 – 492 (2017).Google Scholar
  43. 71.
    T. Sekino, Reduction and sintering of a nickel-dispersed-alumina composite and its properties, T. Sekino, T. Nakajima, S. Ueda, and K. Niihara, J. Am. Ceram. Soc., 80(5), 1139 – 1148 (1997).CrossRefGoogle Scholar
  44. 72.
    A. P. Garshin, Shock-resistant materials based on commercial grade ceramic: achievements and prospects for improving their ballistic efficiency, A. P. Garshin, V. I. Kulik, and A. S. Nilov, Refract. Ind. Ceram., 57(2), 207 – 219 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Federal State Budgetary Educational Institution “Saint Petersburg State Technological Institute (Technical University)”Saint PetersburgRussia

Personalised recommendations