Refractories and Industrial Ceramics

, Volume 59, Issue 5, pp 528–533 | Cite as

Combined Synthesis of Heterogeneous Powders in CaB6–TiB2 System

  • D. D. NesmelovEmail author
  • A. S. Lysenkov
  • D. P. Danilovich
  • T. V. Kotsar
  • S. S. Ordan’yan

The heterogeneous CaB6–TiB2 powder mixtures were synthesized by reducing the mixture of TiO2 and CaCO3 with boron carbide in vacuum at 1400 – 1650°C. Reaction hot pressing was conducted according to the following regime: 1500°C (synthesis in vacuum) – 1900°C (pressing in Ar). As a result of synthesizing CaB6–TiB2 at mass ratio of 1:1 and 1600°C followed by isothermal soaking for 1 hour, a heterogeneous mixture was obtained containing crystalline phases of CaB6 and TiB2 with the residual B4C impurity (0.5 wt. %). The powder particles represent grains measuring 1 – 3 μm in diameter and containing two phases CaB6 and TiB2 in the form of crystallites measuring 0.1 – 1.0 μm in diameter uniformly distributed throughout the particle volume.


calcium hexaboride CaB6 titanium diboride TiB2 combined synthesis boron carbide B4heterogeneous powder 


This study was performed within the scope of the Russian Foundation for Basic Research (RFBR) projects Nos. 17-03-00863 and 18-33-01281 with the use of equipment of the St. Petersburg GTI (TU) Engineering Center.


  1. 1.
    O. N. Grigoriev, B. A. Galanov, A. V. Koroteyev, et al., “Structure and resistance to penetration of heterogeneous B4C–CaB6–TiB2 ceramics,” Dopovidi NAN Ukrainy, 10, 83 – 88 (2012).Google Scholar
  2. 2.
    B. A. Galanov, V. V. Kartuzov, O. N. Grigoriev, et al., “Penetration resistance of B4C–CaB6 based lightweight armor materials,” Procedia Engineering, 58, 328 – 337 (2013).CrossRefGoogle Scholar
  3. 3.
    T. I. Serebryakova, L. F. Ochkas, T. I. Shaposhnikova, et al., “Influence of addition of calcium hexaboride on the structure and properties of hot-pressed titanium boride ceramic,” Powder Metall. Met. Ceram., 37(9/10), 507 – 511 (1998).Google Scholar
  4. 4.
    A. N. Paderno, Y. B. Paderno, A. N. Martynenko, and V. M. Volkogon, “Effect of the production method on the structure formation and failure of the pseudoalloy CaB6–TiB2. I. Sintering by hot pressing under high pressure (thermobaric treatment),” Soviet Powder Metallurgy and Metal Ceramic, 31(10), 863 – 866 (1992).CrossRefGoogle Scholar
  5. 5.
    L. Zhang, G. Min, H. Yu, and H. Yu, “Sintering process and high temperature stability investigation for nano-scale CaB6 materials,” Ceram. Int., 36(7), 2253 – 2257 (2010).CrossRefGoogle Scholar
  6. 6.
    Y. Qiao, L. Qu, X. Zhang, H. Zhang, “Boron carbide composite ceramic preparation and corrosion behavior in simulated seawater,” Ceram. Int., 41(3), 5026 – 5031 (2015).CrossRefGoogle Scholar
  7. 7.
    J. T. Cahill, V. R. Vasquez, S. T. Misture, et al., “Effect of current on diffusivity in metal hexaborides: a spark plasmas intering study,” ACS Applied Materials & Interfaces, 9(42), 37357 – 37363 (2017).CrossRefGoogle Scholar
  8. 8.
    I. Bogomol, P. Badica, Y. Shen, et al., “Room and high temperature toughening in directionally solidified B4C–TiB2 eutectic composites by Si doping,” J. Alloys Compd., 570, 94 – 99 (2013).CrossRefGoogle Scholar
  9. 9.
    D. A. Zakarian, V. V. Kartuzov, A. V. Khachatrian, “Functional materials: temperature and concentration dependence of the mechanical properties of boride composites with the influence of the interactions between the constituent parts,” European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings, The European Powder Metallurgy Association (2015), p. 1.Google Scholar
  10. 10.
    W. Xu and Z. Yuchun, “Preparing CaB6 by molten salt electrolysis and anodic protection,” Chinese Journal of Rare Metals, 5 (2008), p. 23.Google Scholar
  11. 11.
    S. Angappan, M. Helan, A. Visuvasam, L. J. Berchmans, and V. Ananth, “Electrolytic preparation of CaB6 by molten salt technique,” Ionics, 17(6), 527 – 533 (2011).CrossRefGoogle Scholar
  12. 12.
    Y. Y. Wang and H. Jin, “Preparation research of CaB6 powder by self-propagating high-temperature synthesis,” Advanced Materials Research, Trans. Tech. Publications, 284, 2106 – 2109 (2011).Google Scholar
  13. 13.
    X. Huang, J. Zhong, L. Dou, and K. Wang, “Combustion synthesis of CaB6 powder from calcium hexaborate and Mg,” Int. J. Refract. Met. Hard Mater, 28(2), 143 – 149 (2010).CrossRefGoogle Scholar
  14. 14.
    Ö. Balci, D. Aðaoðullari, Ý. Duman, and M. L. Öveçoðlu, “Synthesis of CaB6 powders via mechanochemical reaction of Ca/B2O3 blends,” Powder Technol., 225, 136 – 142 (2012).CrossRefGoogle Scholar
  15. 15.
    L. Zhang, G. H. Min, H. S. Yu, H. M. Chen, and G. Feng, “The size and morphology of fine CaB6 powder synthesized by nanometer CaCO3 as reactant,” Key Eng. Mater., Trans Tech Publications, 326, 369 – 372 (2006).Google Scholar
  16. 16.
    S. Zheng, G. Min, Z. Zou, H. Yu, and J. Han, “Synthesis of calcium hexaboride powder via the reaction of calcium carbonate with boron carbide and carbon,” J. Am. Ceram. Soc., 84(11), 2725 – 2727 (2001).CrossRefGoogle Scholar
  17. 17.
    Z. Lin, M. Guanghui, and Y. Huashun, “Reaction mechanism and size control of CaB6 micron powder synthesized by the boroncarbide method,” Ceram. Int., 35(8), 3533 – 3536 (2009).CrossRefGoogle Scholar
  18. 18.
    Ö. Yildiz, R. Telle, C. Schmalzried, and A. Kaiser, “Phase transformation of transient B4C to CaB6 during production of CaB6 from colemanite,” J. Eur. Ceram. Soc., 25(14), 3375 – 3381 (2005).CrossRefGoogle Scholar
  19. 19.
    A. Akkoyunlu, R. Koc, J. Mawdsley, and D. Carter, “Synthesis of submicron size CaB6 powders using various boron sources,” Nanostructured Materials and Nanotechnology V: Ceramic Engineering and Science Proceedings, 32, 125 – 135 (2011).Google Scholar
  20. 20.
    M. Kakiage, S. Shiomi, T. Ohashi, and H. Kobayashi, “Effect of calcium carbonate particle size on formation and morphology of calcium hexaboride powder synthesized from condensed boric acid-poly (vinyl alcohol) product,” Adv. Powder Technol., 29(1), 36 – 42 (2018).CrossRefGoogle Scholar
  21. 21.
    D. Yilmaz, U. Savaci, N. Koç, and S. Turan, “Carbothermic reduction synthesis of calcium hexaboride using PVA-calcium hexaborate mixed gels,” Ceram. Int., 44(3), 2976 – 2981 (2018).CrossRefGoogle Scholar
  22. 22.
    D. Y. Cakta, N. Koç, and S. Turan, “Synthesis of calcium hexaboride powder via boro/carbothermal reduction with a gel precursor,” J. Ceram. Sci. Technol., 7, 349 – 356 (2016).Google Scholar
  23. 23.
    V. A. Neronov,M. A. Korchagin, V. V. Aleksandrov, and S. N. Gusenko, “Investigation of the interaction between boron and titanium,” Journal of the Less Common Metals, 82, 125 – 129 (1981).CrossRefGoogle Scholar
  24. 24.
    A. Nozari, A. Ataie, S. Heshmati-Manesh, “Synthesis and characterization of nano-structured TiB2 processed by milling assisted SHS route,” Mater. Charact., 73, 96 – 103 (2012).CrossRefGoogle Scholar
  25. 25.
    N. Chaichana, N. Memongkol, J. Wannasin, and S. Niyomwas, “Synthesis of nano-sized TiB2 powder by self-propagating high temperature synthesis,” CMU J. Nat. Sci. Special Issue on Nanotechnol., 7, 51 – 57 (2008).Google Scholar
  26. 26.
    D. D. Radev and D. Klissurski, “Mechanochemical synthesis and SHS of diborides of titanium and zirconium,” J. Mater. Synth. Process., 9(3), 131 – 136 (2001).CrossRefGoogle Scholar
  27. 27.
    H. S. P. Fard, H. R. Baharvandi, H. Abdizadeh, and B. Shahbahrami, “Chemical synthesis of nano-titanium diboride powders by borothermic reduction,” Int. J. Modern Phys. B., 22(18/19), 3179 – 3184 (2008).CrossRefGoogle Scholar
  28. 28.
    W. M. Guo, G. J. Zhang, Y. You, S. H. Wu, and H. T. Lin, “TiB2 powders synthesis by borothermal reduction in TiO2 under vacuum,” J. Am. Ceram. Soc., 97(5), 1359 – 1362 (2014).CrossRefGoogle Scholar
  29. 29.
    L. S. Volkova, Y. M. Shulga, and S. P. Shilkin, “Synthesis of nano-sized titanium diboride in a melt of anhydrous sodium tetraborate,” Russ. J. Gen. Chem., 82(5), 819 – 821 (2012).CrossRefGoogle Scholar
  30. 30.
    L. S. Volkova, S. E. Kravchenko, I. I. Korobov, et al., “Preparation of titanium diboride nanopowders of different particle sizes,” Inorg. Mater., 49(11), 1086 – 1090 (2013).CrossRefGoogle Scholar
  31. 31.
    C. L. Yeh and Y. L. Chen, “Combustion synthesis of TiC–TiB2 composites,” J. Alloys Compd., 463(1/2), 373 – 377 (2008).CrossRefGoogle Scholar
  32. 32.
    A. M. Locci, R. Orrù, G. Cao, and Z. A. Munir, “Simultaneous spark plasma synthesis and densification of TiC–TiB2 composites,” J. Am. Ceram. Soc., 89(3), 848 – 855 (2006).CrossRefGoogle Scholar
  33. 33.
    Y. Ohya, M. J. Hoffmann, and G. Petzow, “Sintering of in situ synthesized SiC–TiB2 composites with improved fracture toughness,” J. Am. Ceram. Soc., 75(9), 2479 – 2483 (1992).CrossRefGoogle Scholar
  34. 34.
    S. G. Huang, K. Vanmeensel, O. Van der Biest, and J. Vleugels, “In situ synthesis and densification of submicrometer-grained B4C–TiB2 composites by pulsed electric current sintering,” J. Eur. Ceram. Soc., 31(4), 637 – 644 (2011).CrossRefGoogle Scholar
  35. 35.
    T. V. Kotsar, D. P. Danilovich, S. S. Ordan’yan, and S. V. Vikhman, “Combined carbothermal synthesis of powders in the B4C–SiC–TiB2 system,” Refractories and Industrial Ceramics, 58(2), 174 – 178 (2017).CrossRefGoogle Scholar
  36. 36.
    A. Altomare, N. Corriero, C. Cuocci, et al., “Main features of QUALX2.0 software for qualitative phase analysis,” Powder Diffr., 32(S1), S129-S134 (2017).CrossRefGoogle Scholar
  37. 37.
    L’. Baèa and N. Stelzer, “Adapting of sol–gel process for preparation of TiB2 powder from low-cost precursors,” J. Eur. Ceram. Soc., 28(5), 907 – 911 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. D. Nesmelov
    • 1
    Email author
  • A. S. Lysenkov
    • 2
  • D. P. Danilovich
    • 1
  • T. V. Kotsar
    • 1
  • S. S. Ordan’yan
    • 1
  1. 1.Federal State Budgetary Educational Institution of Higher Education “St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia
  2. 2.State Budgetary Institution of Science“A.A. Baikov Institute of Metallurgy and Materials Science”MoscowRussia

Personalised recommendations