Skip to main content

Advertisement

Log in

Physical and Mechanical Properties of Hot-Pressed Materials of the ZrB2–TaC–SiC System

  • Published:
Refractories and Industrial Ceramics Aims and scope

High-density (with a relative density of up to 98.8%) ultra-high-temperature ceramic materials (UHTCs) based on the ZrB2–TaC–SiC system were obtained by hot pressing for 15 min at 2000°C 30 MPa of pressure in an argon atmosphere. Phase composition, lattice parameters, microstructure, flexural strength, Vickers hardness and crack resistance were studied. The maximum values of strength, hardness and crack resistance were 440 MPa, 20.3 GPa and 5.3 MPa·m1/2, respectively. The effect of the ZrB2/TaC ratio on the lattice constants and the mechanical properties of the material is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. W. G. Fahrenholtz and G. E. Hilmas, “Ultrahigh-temperature ceramics: materials for extreme environments,” Scripta Mater., 129, 94 – 99 (2017).

    Article  Google Scholar 

  2. R. A. Andrievski, “High-melting-point compounds: new approaches and new results,” Usp. Fiz. Nauk, 60(3), 276 (2017).

    Article  Google Scholar 

  3. E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al., “Promising ultra-high-temperature ceramic materials for aerospace applications,” Russ. J. Inorg. Chem., 58(14), 1669 – 1693 (2013).

    Article  Google Scholar 

  4. I. G. Talmy, J. A. Zaykoski, and M. M. Opeka, “Synthesis, processing and properties of TaC–TaB2–C ceramics,” J. Eur. Ceram. Soc., 30(11), 2253 – 2263 (2010).

    Article  Google Scholar 

  5. S. Q. Guo, Y. Kagawa, T. Nishimura, et al., “Mechanical and physical behavior of spark plasma sintered ZrC–ZrB2–SiC composites,” J. Eur. Ceram. Soc., 28(6), 1279 – 1285 (2008).

    Article  Google Scholar 

  6. I. L. Shabalin, Y. Wang, A. V. Krynkin, et al., “Physicomechanical properties of ultrahigh temperature heteromodulus ceramics based on group 4 transition metal carbides,” Adv. Appl. Ceram., 109(7), 405 – 415 (2010).

    Article  Google Scholar 

  7. V. Medri, F. Monteverde, A. Balbo, et al., “Comparison of ZrB2–ZrC–SiC composites fabricated by spark plasma sintering and hot pressing,” Adv. Eng. Mater., 7(3), 159 – 163 (2005).

    Article  Google Scholar 

  8. O. Popov, S. Chornobuk, and V. Vishnyakov, “Structure formation of TiB2–TiC–B4C – C hetero-modulus ceramics via reaction hot pressing,” Int. J. Refract. Met. Hard Mater., 64, 106 – 112 (2017).

    Article  Google Scholar 

  9. D. Sciti, L. Silvestroni, S. Guicciardi, D. Dalle Fabbriche, and A. Bellosi, “Processing, mechanical properties and oxygenation benavior of TaC and HfC composites containing 15 vol.% TaSi2 or MoSi2,” J. Mater. Res., 24(6), 2056 – 2065 (2009).

    Article  Google Scholar 

  10. S. A. Ghaffari, M. A. Faghihi-Sani, F. Golestani-Fard, H. Mandal, “Spark plasma sintering of TaC – HfC UHTC via disilicides sintering aids,” J. Eur. Ceram. Soc., 33(8), 1479 – 1484 (2013).

    Article  Google Scholar 

  11. P. S. Sokolov, A. V. Arakcheev, I. L. Mikhal’chik, et al., “Ultrahigh-temperature ceramic based on ZrB2–SiC: preparation and main properties,” Refract. Ind. Ceram., 58(1), 46 – 52 (2017).

    Article  Google Scholar 

  12. R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, and K. Goto, “Initial oxidation behaviors of ZrB2–SiC–ZrC ternary composites above 2000°C,” J. Alloys Compd., 731, 310 – 317 (2018).

    Article  Google Scholar 

  13. Y. Arai, R. Inoue, H. Tanaka, Y. Kogo, and K. Goto, “In-situ observation of oxidation behavior in ZrB2–SiC–ZrC ternary composites up to 1500°C using high-temperature observation system,” J. Ceram. Soc. Jpn., 124(9), 890 – 897 (2016).

    Article  Google Scholar 

  14. Y. Kubota, H. Tanaka, Y. Arai, et al., “Oxidation behavior of ZrB2–SiC–ZrC at 1700°C,” J. Eur. Ceram. Soc., 37(4), 1187 – 1194 (2017).

    Article  Google Scholar 

  15. I. Akin and G. Goller, “Mechanical and oxidation behavior of spark plasma sintered ZrB2–ZrC–SiC composites,” J. Ceram. Soc. Jpn., 120(1400), 143 – 149 (2012).

    Article  Google Scholar 

  16. Z. Wang, Z. Wu, and G. Shi, “The oxidation behaviors of a ZrB2–SiC–ZrC ceramic,” Solid State Sci., 13(3), 534 – 538 (2011).

    Article  Google Scholar 

  17. Z. Wu, Z. Wang, G. Shi, and J. Sheng, “Effect of surface oxidation on thermal shock resistance of the ZrB2–SiC–ZrC ceramic,” Compos. Sci. Technol., 71(12), 1501 – 1506 (2011).

    Article  Google Scholar 

  18. H. Wu, C. Xie, W. Zhang, et al., “Fabrication and properties of 2D C/C–ZrB2–ZrC–SiC composites by hybrid precursor infiltration and pyrolysis,” Adv. Appl. Ceram., 112(6), 366 – 373 (2013).

    Article  Google Scholar 

  19. L. Li, Y. Wang, L. Cheng, and L. Zhang, “Preparation and properties of 2D C/SiC–ZrB2–TaC composites,” Ceram. Int., 37(3), 891 – 896 (2011).

    Article  Google Scholar 

  20. X. Ren, H. Li, Q. Fu, and K. Li, “Ultra-high temperature ceramic TaB2–TaC–SiC coating for oxidation protection of SiC-coated carbon/carbon composites,” Ceram. Int., 40(7), 9419 – 9425 (2014).

    Article  Google Scholar 

  21. S. S. Ordanyan, D. D. Nesmelov, D. P. Danilovich, and Yu. P. Udalov, “Revisiting the Structure of SiC–B4C–MedB2 systems and prospects for the development of composite ceramic materials based on them,” Russ. J. Non-Ferr. Met., 58(5), 545 – 551 (2017).

    Article  Google Scholar 

  22. S. S. Ordanyan, S. V. Vikhman, D. D. Nesmelov, et al., “Nonoxide high-melting point compounds as materials for extreme conditions,” Adv. Sci. Tech., 89, 47 – 56 (2014).

    Article  Google Scholar 

  23. S. S. Ordan’yan and V. I. Unrod, “Reactions in the system ZrC–ZrB2,” Sov. Powder Metall., 14(5), 393 – 395 (1975).

    Article  Google Scholar 

  24. S. S. Ordan’yan, V. I. Unrod, V. S. Polishchuk, and N. M. Storonkina, “Reactions in the system TaC–TaB2,” Sov. Powder Metall., 15(9), 692 – 695 (1976).

    Article  Google Scholar 

  25. S. S. Ordanyan, V. I. Unrod, A. E. Lutsenko, “Interaction in the HfC–HfB2 system” [in Russian], Neorganicheskie Materialy, 13(3), 546 – 545 (1977).

  26. S. S. Ordanyan, “Laws of interaction patterns in the systems MIV,VC–MIV,VB2” [in Russian], Neorganicheskie Materialy, 16(8), 1407 – 1111 (1980).

  27. O. Cedillos-Barraza, D. Manara, K. Boboridis, et al., “Investigating the highest melting temperature materials: a laser melting study of the TaC–HfC system,” Sci. Rep — UK, 6, Article 37962 (2016).

  28. H. F. Jackson, D. J. Daniel,W. J. Clegg, et al., “Laser melting of spark plasma-sintered zirconium carbide: thermophysical properties of a generation IV very high-temperature reactor material,” Int. J. Appl. Ceram. Tec., 7(3), 316 – 326 (2010).

    Article  Google Scholar 

  29. D. Manara, H. F. Jackson, C. Perinetti-Casoni, et al., “The ZrC–C eutectic structure and melting behaviour: a high-temperature radiance spectroscopy study,” J. Eur. Ceram. Soc., 33(7), 1349 – 1361 (2013).

    Article  Google Scholar 

  30. I. L. Shabalin, “Carbon (Graphene/Graphite),” Ultra-High Temperature Materials I, Springer, Dordrecht (2014) 7 – 235.

  31. A. I. Savvatimskiy, “Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963 – 2003),” Carbon, 43(6), 1115 – 1142 (2005).

  32. X. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, “Densification and mechanical properties of TaC-based ceramics,” Mater. Sci. Eng. A, 501(1/2), 37 – 43 (2009).

    Google Scholar 

  33. C. C. Sorrell, V. S. Stubican, and R. C. Bradt, “Mechanical properties of ZrC–ZrB2 and ZrC–TiB2 directionally solidified eutectics,” J. Am. Ceram. Soc., 69(4), 317 – 321 (1986).

    Article  Google Scholar 

  34. C. C. Sorrell, H. R. Beratan, R. C. Bradt, and V. S. Stubican, “Directional solidification of (Ti, Zr) carbide – (Ti, Zr) diboride eutectics,” J. Am. Ceram. Soc., 67(3), 190 – 194 (1984).

    Article  Google Scholar 

  35. I. Bogomol, T. Nishimura, Y. Nesterenko, et al., “The bending strength temperature dependence of the directionally solidified eutectic LaB6–ZrB2 composite,” J. Alloys Compd., 509(20), 6123 – 6129 (2011).

    Article  Google Scholar 

  36. E. Castle, T. Csanádi, S. Grasso, et al., “Processing and properties of high-entropy ultrahigh temperature carbides,” Sci. Rep. – UK, 8(1), Article 8609 (2018).

  37. J. Dusza, P. Švec, V. Girman, et al., “Microstructure of (Hf–Ta–Zr–Nb) C high-entropy carbide at micro and nano / atomic level,” J. Eur. Ceram. Soc., 38(12), 4303 – 4307 (2018).

    Article  Google Scholar 

  38. E. P. Simonenko, N. A. Ignatov, N. P. Simonenko, et al., “Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology,” Russ. J. Inorg. Chem., 56(11), 1681 – 1687 (2011).

    Article  Google Scholar 

  39. Y. Zeng, D. Wang, X. Xiong, et al., “Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000°C,” Nat. Commun., 8, Article 15836 (2017).

  40. Q. J. Hong and A. van deWalle, “Prediction of the material with highest known melting point from ab initio molecular dynamics calculations,” Phys. Rev. B. Condens. Mater., 92(2), 020104 (2015).

  41. J. Arblaster, “Solution to highest melting point challenge,” Anal. Bioanal. Chem., 407(22), 6589 (2015).

    Article  Google Scholar 

  42. S. M. Kats, S. S. Ordan’yan, and V. I. Unrod, “Compressive creep of alloys of the ZrC–ZrB2 and TiC–TiB2 systems,” Sov. Powder Metall., 20(12), 886 – 890 (1981).

    Article  Google Scholar 

  43. C. J. Smith, X. X. Yu, Q. Guo, et al., “Phase, hardness, and deformation slip behavior in mixed HfxTa1–xC,” Acta Mater., 145, 142 – 153 (2018).

    Article  Google Scholar 

  44. X. G. Wang, J. X. Liu, Y. M. Kan, et al., “Effect of solid solution formation on densification of hot-pressed ZrC ceramics with MC (M = V, Nb, and Ta) additions,” J. Eur. Ceram. Soc., 32(8), 1795 – 1802 (2012).

    Article  Google Scholar 

  45. Y. Wang, B. Ma, L. Li, and L. An, “Oxidation behavior of ZrB2–SiC–TaC Ceramics,” J. Am. Ceram. Soc., 95(1), 374 – 378 (2012).

    Article  Google Scholar 

  46. D. Demirskyi, T. Nishimura, Y. Sakka, and O. Vasylkiv, “High-strength TiB2–TaC ceramic composites prepared using reactive spark plasma consolidation,” Ceram. Int., 42(1), 1298 – 1306 (2016).

    Article  Google Scholar 

  47. D. P. Danilovich, V. I. Rumyantsev, and S. S. Ordanyan, “The SiC–TiC–TiB2 system as the basis of ceramic composites” [in Russian], Voprosy Materialovedeniya, No. 4, 42 – 47 (2009).

  48. GOST 20019–74. “Sintered solid alloys. Method for determining the tensile strength in transverse bending (with Changes No. 1, 2, 3)” [in Russian], introduced January 01, 1976; Izdatel’stvo Standartov, Moscow (1986) 49 p.

  49. J. X. Liu, Y. M. Kan, and G. J. Zhang, “Pressureless sintering of tantalum carbide ceramics without additives,” J. Am. Ceram. Soc., 93(2), 370 – 373 (2010).

    Article  Google Scholar 

  50. F. Rezaei, M. G. Kakroudi, V. Shahedifer, et al., “Densification, microstructure and mechanical properties of hot-pressed tantalum carbide,” Ceram. Int., 43(4), 3489 – 3494 (2017).

    Article  Google Scholar 

Download references

This work was supported by the Russian Foundation for Basic Research (project No. 18-53-18014 Bolg a) using the equipment of the St. Petersburg State Engineering Institute (Technical University) engineering center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Nesmelov.

Additional information

Translated from Novye Ogneupory, No. 10, pp. 16 – 23, October 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesmelov, D.D., Shabalkin, I.D., Lysenkov, A.S. et al. Physical and Mechanical Properties of Hot-Pressed Materials of the ZrB2–TaC–SiC System. Refract Ind Ceram 59, 514–521 (2019). https://doi.org/10.1007/s11148-019-00264-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-019-00264-7

Keywords

Navigation