High-density (with a relative density of up to 98.8%) ultra-high-temperature ceramic materials (UHTCs) based on the ZrB2–TaC–SiC system were obtained by hot pressing for 15 min at 2000°C 30 MPa of pressure in an argon atmosphere. Phase composition, lattice parameters, microstructure, flexural strength, Vickers hardness and crack resistance were studied. The maximum values of strength, hardness and crack resistance were 440 MPa, 20.3 GPa and 5.3 MPa·m1/2, respectively. The effect of the ZrB2/TaC ratio on the lattice constants and the mechanical properties of the material is established.
Similar content being viewed by others
References
W. G. Fahrenholtz and G. E. Hilmas, “Ultrahigh-temperature ceramics: materials for extreme environments,” Scripta Mater., 129, 94 – 99 (2017).
R. A. Andrievski, “High-melting-point compounds: new approaches and new results,” Usp. Fiz. Nauk, 60(3), 276 (2017).
E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al., “Promising ultra-high-temperature ceramic materials for aerospace applications,” Russ. J. Inorg. Chem., 58(14), 1669 – 1693 (2013).
I. G. Talmy, J. A. Zaykoski, and M. M. Opeka, “Synthesis, processing and properties of TaC–TaB2–C ceramics,” J. Eur. Ceram. Soc., 30(11), 2253 – 2263 (2010).
S. Q. Guo, Y. Kagawa, T. Nishimura, et al., “Mechanical and physical behavior of spark plasma sintered ZrC–ZrB2–SiC composites,” J. Eur. Ceram. Soc., 28(6), 1279 – 1285 (2008).
I. L. Shabalin, Y. Wang, A. V. Krynkin, et al., “Physicomechanical properties of ultrahigh temperature heteromodulus ceramics based on group 4 transition metal carbides,” Adv. Appl. Ceram., 109(7), 405 – 415 (2010).
V. Medri, F. Monteverde, A. Balbo, et al., “Comparison of ZrB2–ZrC–SiC composites fabricated by spark plasma sintering and hot pressing,” Adv. Eng. Mater., 7(3), 159 – 163 (2005).
O. Popov, S. Chornobuk, and V. Vishnyakov, “Structure formation of TiB2–TiC–B4C – C hetero-modulus ceramics via reaction hot pressing,” Int. J. Refract. Met. Hard Mater., 64, 106 – 112 (2017).
D. Sciti, L. Silvestroni, S. Guicciardi, D. Dalle Fabbriche, and A. Bellosi, “Processing, mechanical properties and oxygenation benavior of TaC and HfC composites containing 15 vol.% TaSi2 or MoSi2,” J. Mater. Res., 24(6), 2056 – 2065 (2009).
S. A. Ghaffari, M. A. Faghihi-Sani, F. Golestani-Fard, H. Mandal, “Spark plasma sintering of TaC – HfC UHTC via disilicides sintering aids,” J. Eur. Ceram. Soc., 33(8), 1479 – 1484 (2013).
P. S. Sokolov, A. V. Arakcheev, I. L. Mikhal’chik, et al., “Ultrahigh-temperature ceramic based on ZrB2–SiC: preparation and main properties,” Refract. Ind. Ceram., 58(1), 46 – 52 (2017).
R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, and K. Goto, “Initial oxidation behaviors of ZrB2–SiC–ZrC ternary composites above 2000°C,” J. Alloys Compd., 731, 310 – 317 (2018).
Y. Arai, R. Inoue, H. Tanaka, Y. Kogo, and K. Goto, “In-situ observation of oxidation behavior in ZrB2–SiC–ZrC ternary composites up to 1500°C using high-temperature observation system,” J. Ceram. Soc. Jpn., 124(9), 890 – 897 (2016).
Y. Kubota, H. Tanaka, Y. Arai, et al., “Oxidation behavior of ZrB2–SiC–ZrC at 1700°C,” J. Eur. Ceram. Soc., 37(4), 1187 – 1194 (2017).
I. Akin and G. Goller, “Mechanical and oxidation behavior of spark plasma sintered ZrB2–ZrC–SiC composites,” J. Ceram. Soc. Jpn., 120(1400), 143 – 149 (2012).
Z. Wang, Z. Wu, and G. Shi, “The oxidation behaviors of a ZrB2–SiC–ZrC ceramic,” Solid State Sci., 13(3), 534 – 538 (2011).
Z. Wu, Z. Wang, G. Shi, and J. Sheng, “Effect of surface oxidation on thermal shock resistance of the ZrB2–SiC–ZrC ceramic,” Compos. Sci. Technol., 71(12), 1501 – 1506 (2011).
H. Wu, C. Xie, W. Zhang, et al., “Fabrication and properties of 2D C/C–ZrB2–ZrC–SiC composites by hybrid precursor infiltration and pyrolysis,” Adv. Appl. Ceram., 112(6), 366 – 373 (2013).
L. Li, Y. Wang, L. Cheng, and L. Zhang, “Preparation and properties of 2D C/SiC–ZrB2–TaC composites,” Ceram. Int., 37(3), 891 – 896 (2011).
X. Ren, H. Li, Q. Fu, and K. Li, “Ultra-high temperature ceramic TaB2–TaC–SiC coating for oxidation protection of SiC-coated carbon/carbon composites,” Ceram. Int., 40(7), 9419 – 9425 (2014).
S. S. Ordanyan, D. D. Nesmelov, D. P. Danilovich, and Yu. P. Udalov, “Revisiting the Structure of SiC–B4C–MedB2 systems and prospects for the development of composite ceramic materials based on them,” Russ. J. Non-Ferr. Met., 58(5), 545 – 551 (2017).
S. S. Ordanyan, S. V. Vikhman, D. D. Nesmelov, et al., “Nonoxide high-melting point compounds as materials for extreme conditions,” Adv. Sci. Tech., 89, 47 – 56 (2014).
S. S. Ordan’yan and V. I. Unrod, “Reactions in the system ZrC–ZrB2,” Sov. Powder Metall., 14(5), 393 – 395 (1975).
S. S. Ordan’yan, V. I. Unrod, V. S. Polishchuk, and N. M. Storonkina, “Reactions in the system TaC–TaB2,” Sov. Powder Metall., 15(9), 692 – 695 (1976).
S. S. Ordanyan, V. I. Unrod, A. E. Lutsenko, “Interaction in the HfC–HfB2 system” [in Russian], Neorganicheskie Materialy, 13(3), 546 – 545 (1977).
S. S. Ordanyan, “Laws of interaction patterns in the systems MIV,VC–MIV,VB2” [in Russian], Neorganicheskie Materialy, 16(8), 1407 – 1111 (1980).
O. Cedillos-Barraza, D. Manara, K. Boboridis, et al., “Investigating the highest melting temperature materials: a laser melting study of the TaC–HfC system,” Sci. Rep — UK, 6, Article 37962 (2016).
H. F. Jackson, D. J. Daniel,W. J. Clegg, et al., “Laser melting of spark plasma-sintered zirconium carbide: thermophysical properties of a generation IV very high-temperature reactor material,” Int. J. Appl. Ceram. Tec., 7(3), 316 – 326 (2010).
D. Manara, H. F. Jackson, C. Perinetti-Casoni, et al., “The ZrC–C eutectic structure and melting behaviour: a high-temperature radiance spectroscopy study,” J. Eur. Ceram. Soc., 33(7), 1349 – 1361 (2013).
I. L. Shabalin, “Carbon (Graphene/Graphite),” Ultra-High Temperature Materials I, Springer, Dordrecht (2014) 7 – 235.
A. I. Savvatimskiy, “Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963 – 2003),” Carbon, 43(6), 1115 – 1142 (2005).
X. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, “Densification and mechanical properties of TaC-based ceramics,” Mater. Sci. Eng. A, 501(1/2), 37 – 43 (2009).
C. C. Sorrell, V. S. Stubican, and R. C. Bradt, “Mechanical properties of ZrC–ZrB2 and ZrC–TiB2 directionally solidified eutectics,” J. Am. Ceram. Soc., 69(4), 317 – 321 (1986).
C. C. Sorrell, H. R. Beratan, R. C. Bradt, and V. S. Stubican, “Directional solidification of (Ti, Zr) carbide – (Ti, Zr) diboride eutectics,” J. Am. Ceram. Soc., 67(3), 190 – 194 (1984).
I. Bogomol, T. Nishimura, Y. Nesterenko, et al., “The bending strength temperature dependence of the directionally solidified eutectic LaB6–ZrB2 composite,” J. Alloys Compd., 509(20), 6123 – 6129 (2011).
E. Castle, T. Csanádi, S. Grasso, et al., “Processing and properties of high-entropy ultrahigh temperature carbides,” Sci. Rep. – UK, 8(1), Article 8609 (2018).
J. Dusza, P. Švec, V. Girman, et al., “Microstructure of (Hf–Ta–Zr–Nb) C high-entropy carbide at micro and nano / atomic level,” J. Eur. Ceram. Soc., 38(12), 4303 – 4307 (2018).
E. P. Simonenko, N. A. Ignatov, N. P. Simonenko, et al., “Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology,” Russ. J. Inorg. Chem., 56(11), 1681 – 1687 (2011).
Y. Zeng, D. Wang, X. Xiong, et al., “Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000°C,” Nat. Commun., 8, Article 15836 (2017).
Q. J. Hong and A. van deWalle, “Prediction of the material with highest known melting point from ab initio molecular dynamics calculations,” Phys. Rev. B. Condens. Mater., 92(2), 020104 (2015).
J. Arblaster, “Solution to highest melting point challenge,” Anal. Bioanal. Chem., 407(22), 6589 (2015).
S. M. Kats, S. S. Ordan’yan, and V. I. Unrod, “Compressive creep of alloys of the ZrC–ZrB2 and TiC–TiB2 systems,” Sov. Powder Metall., 20(12), 886 – 890 (1981).
C. J. Smith, X. X. Yu, Q. Guo, et al., “Phase, hardness, and deformation slip behavior in mixed HfxTa1–xC,” Acta Mater., 145, 142 – 153 (2018).
X. G. Wang, J. X. Liu, Y. M. Kan, et al., “Effect of solid solution formation on densification of hot-pressed ZrC ceramics with MC (M = V, Nb, and Ta) additions,” J. Eur. Ceram. Soc., 32(8), 1795 – 1802 (2012).
Y. Wang, B. Ma, L. Li, and L. An, “Oxidation behavior of ZrB2–SiC–TaC Ceramics,” J. Am. Ceram. Soc., 95(1), 374 – 378 (2012).
D. Demirskyi, T. Nishimura, Y. Sakka, and O. Vasylkiv, “High-strength TiB2–TaC ceramic composites prepared using reactive spark plasma consolidation,” Ceram. Int., 42(1), 1298 – 1306 (2016).
D. P. Danilovich, V. I. Rumyantsev, and S. S. Ordanyan, “The SiC–TiC–TiB2 system as the basis of ceramic composites” [in Russian], Voprosy Materialovedeniya, No. 4, 42 – 47 (2009).
GOST 20019–74. “Sintered solid alloys. Method for determining the tensile strength in transverse bending (with Changes No. 1, 2, 3)” [in Russian], introduced January 01, 1976; Izdatel’stvo Standartov, Moscow (1986) 49 p.
J. X. Liu, Y. M. Kan, and G. J. Zhang, “Pressureless sintering of tantalum carbide ceramics without additives,” J. Am. Ceram. Soc., 93(2), 370 – 373 (2010).
F. Rezaei, M. G. Kakroudi, V. Shahedifer, et al., “Densification, microstructure and mechanical properties of hot-pressed tantalum carbide,” Ceram. Int., 43(4), 3489 – 3494 (2017).
This work was supported by the Russian Foundation for Basic Research (project No. 18-53-18014 Bolg a) using the equipment of the St. Petersburg State Engineering Institute (Technical University) engineering center.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Novye Ogneupory, No. 10, pp. 16 – 23, October 2018.
Rights and permissions
About this article
Cite this article
Nesmelov, D.D., Shabalkin, I.D., Lysenkov, A.S. et al. Physical and Mechanical Properties of Hot-Pressed Materials of the ZrB2–TaC–SiC System. Refract Ind Ceram 59, 514–521 (2019). https://doi.org/10.1007/s11148-019-00264-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11148-019-00264-7