Features of Using Modified Carbon-Graphite Lining Materials in Aluminum Electrolyzers

Penetration of sodium into carbon-graphite material (CGM) specimens previously modified with lithium is studied. Sodium diffusion coefficients are calculated after treating CGM with lithium vapor and values are determined for activation energy of diffusion under different conditions. The kinetic dependences obtained make it possible to determine the sodium diffusion mechanism in modified CGM. The efficiency is demonstrated of preliminary treatment with lithium vapor that makes it possible to prevent aluminum electrolyzer cathode lining surface layer breakdown during operation. The tests on CGM specimens performed make it possible to create prerequisites for developing technology for hearth surface protection from sodium penetration during electrolysis in molten cryolite-alumina.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1.

    V. M. Sizyakov, V. Yu. Bazhin, R. K. Patrin, et al., “Features of high-amperage electrolyzer hearth breakdown,” Refract. Indust. Ceram., 54(3), 151 – 154 (2013).

    Article  Google Scholar 

  2. 2.

    A. V. Saitov, V. Yu. Bazhin, and R. Yu. Feshchenko, “Operational problems of a graphitized cathodic block lining in contemporary aluminum electrolyzers,” Refract. Indust. Ceram., 58(2), 126 – 129 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    M. Sorlie and H. Oye, Cathodes in Aluminium Electrolysis, Aluminium-Verlag, Düsseldorf (2013).

    Google Scholar 

  4. 4.

    M. B. Rapoport, Carbon-Graphite Interlayer Compounds and their Value in Aluminum Metallurgy [in Russian], TsNIItsvetmetinformatsiya, Moscow (1967).

    Google Scholar 

  5. 5.

    E. S. Gorlanov, V. Yu. Bazhin, and S. N. Fedorov, “Carbide formation at a carbon-graphite lining cathode surface wettable with aluminum,” Refract. Indust. Ceram., 57(5), 292 – 296 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    S. Bao, K. Tang, A. Kvithyld, T. Engh, and M. Tangstad, “Wetting of pure aluminium on graphite, SiC and Al2O3 in aluminium filtration,” Trans. Nonferrous Metals Society of China, 22(8), 1930 – 1938 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    V. De Nora and T. Nguyen, “Inert anode: Challenges from fundamental research to industrial application,” Light Metals, 417 – 421 (2009).

  8. 8.

    Han-bing He, Y. Wang, Jia-ju Long, and Zhao-hui Chen, “Corrosion of NiFe2O4–10NiO–based cermet inert anodes for aluminium electrolysis,” Trans. Nonferrous Metals Society of China., 23(12), 3816 – 3821 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    M. B. Rapoport, “Increase in the life of cathode blocks of aluminum electrolyzers,” Trudy VAMI, 38 (1955).

  10. 10.

    D. S. Newman, H. Justnes, and H. A. Oye, “The effect of Li on graphitic cathodes used in aluminum electrolysis,” Metall., 6, 582 – 584 (1986).

    Google Scholar 

  11. 11.

    V. Yu. Bazhin and A. V. Saitov, “Improvement of the physical and operating properties of carbon-graphite lining with lithium additions,” Novye Ogneupory, No. 1, 49 – 54 (2018).

  12. 12.

    G. V. Galevskii, N. M. Kulagin, M. Ya. Mintsis, and G. A. Sirazutdinov, Aluminum Metallurgy. Technology, Electrical Supply, Automation: Hgih School Texbook [in Russian], Nauka, Moscow (2008).

    Google Scholar 

  13. 13.

    A. R. Ubbelohde and F. A. Lewis, Graphite and its Crystal Compounds Oxford University Press (1965).

  14. 14.

    V. Yu. Bazhin, R. Yu. Feshchenko, A. V. Saitov, and E. A. Kuznetsova, “Protection of an aluminum electrolyzer carbon-graphite lining by a lithium intercalation layer,” Refract. Indust. Ceram., 55(2), 81 – 83 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    V. A. Emel’kin, M. G. Ktakherman and B. A. Pozdnyakov, “Preparation of lithium oxide with decomposition of lithium carbonate in a stream of heat carrier,” Teoret. Osnovy. Khim. Tekhnol., 43(1), 93 – 98 (2009).

    Google Scholar 

  16. 16.

    E. W. Dewing, “The reaction of sodium with nongraphitic carbon: Reactions occurring in the linings of aluminium reduction cells,” Trans. Metall Soc. AIME., 227(12), 1328 – 1334 (1963).

    CAS  Google Scholar 

  17. 17.

    P. Sh’yumon, Diffusion in Solids [in Russian], Metallurgiya. Moscow (1966).

    Google Scholar 

  18. 18.

    B. V. Romanovskii, Bases of Chemical technology: High School Textbook [in Russian], Ekzamen, Moscow (2006).

    Google Scholar 

  19. 19.

    N. K. Kondrasheva, F. D. Baitalov, and A. A. Boitsova, “Comparative assessment of structural-mechanical properties of heavy oils of Timano-Pechorskaya province,” Zapiski Gornogo Instituta, 225, 320 – 329 (2017).

    Google Scholar 

  20. 20.

    O. Yu. Elagin, Production Methods for Increasing the Wear Resistance of Machine Components: Textbook [in Russian], Univer. Kniga, Logos (2009).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. Yu. Bazhin.

Additional information

Translated from Novye Ogneupory, No. 5, pp. 56 – 65, May, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saitov, A.V., Bazhin, V.Y. Features of Using Modified Carbon-Graphite Lining Materials in Aluminum Electrolyzers. Refract Ind Ceram 59, 278–286 (2018). https://doi.org/10.1007/s11148-018-0221-5

Download citation


  • carbon-graphite material (CGM)
  • aluminum electrolyzer
  • molten cryolite-alumina (MCA)
  • lithium intercalation
  • cathode unit
  • diffusion coefficient
  • activation energy