Refractories and Industrial Ceramics

, Volume 59, Issue 3, pp 278–286 | Cite as

Features of Using Modified Carbon-Graphite Lining Materials in Aluminum Electrolyzers

  • A. V. Saitov
  • V. Yu. BazhinEmail author

Penetration of sodium into carbon-graphite material (CGM) specimens previously modified with lithium is studied. Sodium diffusion coefficients are calculated after treating CGM with lithium vapor and values are determined for activation energy of diffusion under different conditions. The kinetic dependences obtained make it possible to determine the sodium diffusion mechanism in modified CGM. The efficiency is demonstrated of preliminary treatment with lithium vapor that makes it possible to prevent aluminum electrolyzer cathode lining surface layer breakdown during operation. The tests on CGM specimens performed make it possible to create prerequisites for developing technology for hearth surface protection from sodium penetration during electrolysis in molten cryolite-alumina.


carbon-graphite material (CGM) aluminum electrolyzer molten cryolite-alumina (MCA) lithium intercalation cathode unit diffusion coefficient activation energy 


  1. 1.
    V. M. Sizyakov, V. Yu. Bazhin, R. K. Patrin, et al., “Features of high-amperage electrolyzer hearth breakdown,” Refract. Indust. Ceram., 54(3), 151 – 154 (2013).CrossRefGoogle Scholar
  2. 2.
    A. V. Saitov, V. Yu. Bazhin, and R. Yu. Feshchenko, “Operational problems of a graphitized cathodic block lining in contemporary aluminum electrolyzers,” Refract. Indust. Ceram., 58(2), 126 – 129 (2017).CrossRefGoogle Scholar
  3. 3.
    M. Sorlie and H. Oye, Cathodes in Aluminium Electrolysis, Aluminium-Verlag, Düsseldorf (2013).Google Scholar
  4. 4.
    M. B. Rapoport, Carbon-Graphite Interlayer Compounds and their Value in Aluminum Metallurgy [in Russian], TsNIItsvetmetinformatsiya, Moscow (1967).Google Scholar
  5. 5.
    E. S. Gorlanov, V. Yu. Bazhin, and S. N. Fedorov, “Carbide formation at a carbon-graphite lining cathode surface wettable with aluminum,” Refract. Indust. Ceram., 57(5), 292 – 296 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Bao, K. Tang, A. Kvithyld, T. Engh, and M. Tangstad, “Wetting of pure aluminium on graphite, SiC and Al2O3 in aluminium filtration,” Trans. Nonferrous Metals Society of China, 22(8), 1930 – 1938 (2012).CrossRefGoogle Scholar
  7. 7.
    V. De Nora and T. Nguyen, “Inert anode: Challenges from fundamental research to industrial application,” Light Metals, 417 – 421 (2009).Google Scholar
  8. 8.
    Han-bing He, Y. Wang, Jia-ju Long, and Zhao-hui Chen, “Corrosion of NiFe2O4–10NiO–based cermet inert anodes for aluminium electrolysis,” Trans. Nonferrous Metals Society of China., 23(12), 3816 – 3821 (2013).CrossRefGoogle Scholar
  9. 9.
    M. B. Rapoport, “Increase in the life of cathode blocks of aluminum electrolyzers,” Trudy VAMI, 38 (1955).Google Scholar
  10. 10.
    D. S. Newman, H. Justnes, and H. A. Oye, “The effect of Li on graphitic cathodes used in aluminum electrolysis,” Metall., 6, 582 – 584 (1986).Google Scholar
  11. 11.
    V. Yu. Bazhin and A. V. Saitov, “Improvement of the physical and operating properties of carbon-graphite lining with lithium additions,” Novye Ogneupory, No. 1, 49 – 54 (2018).Google Scholar
  12. 12.
    G. V. Galevskii, N. M. Kulagin, M. Ya. Mintsis, and G. A. Sirazutdinov, Aluminum Metallurgy. Technology, Electrical Supply, Automation: Hgih School Texbook [in Russian], Nauka, Moscow (2008).Google Scholar
  13. 13.
    A. R. Ubbelohde and F. A. Lewis, Graphite and its Crystal Compounds Oxford University Press (1965).Google Scholar
  14. 14.
    V. Yu. Bazhin, R. Yu. Feshchenko, A. V. Saitov, and E. A. Kuznetsova, “Protection of an aluminum electrolyzer carbon-graphite lining by a lithium intercalation layer,” Refract. Indust. Ceram., 55(2), 81 – 83 (2014).CrossRefGoogle Scholar
  15. 15.
    V. A. Emel’kin, M. G. Ktakherman and B. A. Pozdnyakov, “Preparation of lithium oxide with decomposition of lithium carbonate in a stream of heat carrier,” Teoret. Osnovy. Khim. Tekhnol., 43(1), 93 – 98 (2009).Google Scholar
  16. 16.
    E. W. Dewing, “The reaction of sodium with nongraphitic carbon: Reactions occurring in the linings of aluminium reduction cells,” Trans. Metall Soc. AIME., 227(12), 1328 – 1334 (1963).Google Scholar
  17. 17.
    P. Sh’yumon, Diffusion in Solids [in Russian], Metallurgiya. Moscow (1966).Google Scholar
  18. 18.
    B. V. Romanovskii, Bases of Chemical technology: High School Textbook [in Russian], Ekzamen, Moscow (2006).Google Scholar
  19. 19.
    N. K. Kondrasheva, F. D. Baitalov, and A. A. Boitsova, “Comparative assessment of structural-mechanical properties of heavy oils of Timano-Pechorskaya province,” Zapiski Gornogo Instituta, 225, 320 – 329 (2017).Google Scholar
  20. 20.
    O. Yu. Elagin, Production Methods for Increasing the Wear Resistance of Machine Components: Textbook [in Russian], Univer. Kniga, Logos (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.FGBOU VO St. Petersburg Mining UniversitySt. PetersburgRussia

Personalised recommendations