Skip to main content
Log in

Formation of Wear- and Corrosion-Resistant Coatings by the Microarc Oxidation of Aluminum

  • Published:
Refractories and Industrial Ceramics Aims and scope

We present the results of experimental investigations in the field of formation of ceramic aluminooxide coatings by the method of microarc oxidation of aluminum. The research works were carried out at the “Prometei” CSRS of Structural Materials of the “Kurchatov Institute” SRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. V. F. Henley, Anodic Oxidation of Aluminum and Its Alloys, Pergamon Press, Elmsford, NY (1982).

    Google Scholar 

  2. V. I. Chernenko, V. I. Snezhko, and I. I. Papanova, Creation of Coatings by Anodic Arc Electrolysis [in Russian], Khimiya, Leningrad (1991).

    Google Scholar 

  3. S. V. Korsh, Technology of microarc oxidation of workpieces made of titanium and aluminum alloys, Progress. Mater. Tekhnol., No. 1, 188 – 189 (1993).

  4. N. V. Barykin, Development of the Technology of Recovery and Hardening of Products Made of Aluminum Alloys by Microarc Oxidation [in Russian], Candidate-Degree Thesis (Engineering) Moscow (1994).

  5. S. Sun, Q. Zheng, D. Li, and J. Wen, “Long-term atmospheric corrosion behavior of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments,” Corros. Sci., 51, 719 – 727 (2009).

    Article  CAS  Google Scholar 

  6. T. G. Harvey, “Cerium based conversion coatings on aluminium alloys: A process review,” Corros. Eng. Sci. Technol., 48, 248 – 269 (2013).

    Article  CAS  Google Scholar 

  7. A. Bozza, R. Giovanardi, T. Manfredini, et al., “Pulsed current effect on hard anodizing process of 7075-T6 aluminium alloy,” Surf. Coat. Technol., 270, 139 – 144 (2015).

    Article  CAS  Google Scholar 

  8. P. M. Nedozorov, K. N. Klin, T. P. Yarovaya, et al., “Optical properties of ZrO2-containing anodic coatings on aluminum,” Zh. Prikl. Spektr., 68(4), 512 – 514 (2001).

    Google Scholar 

  9. M. S. Vasil’eva, V. S. Rudnev, N. B. Kondrikov, et al., “Catalytic activity of Mn-containing layers formed by the anodic spark deposition,” Zh. Prikl. Khim., 77(2), 222 – 225 (2004).

    Google Scholar 

  10. E. Matykina, R. Arrabl, A. Mohamed, et al., “Plasma electrolytic oxidation of preanodized aluminium,” Corros. Sci., 51, 2897 – 2905 (2009).

    Article  CAS  Google Scholar 

  11. X. Yang, M. Li, X. Lin, et al., “Enhanced in vitro biocompatibility/bioactivity of biodegradable Mg–Zn–Zr alloy by micro-arc oxidation coating contained Mg2SiO4,” Surf. Coat. Technol., 233, 65 – 73 (2013).

    Article  CAS  Google Scholar 

  12. S. V. Gnedenkov, S. L. Sinebryukhov, O. A. Khrisanfova, et al., “Protective coatings on MA8 magnesium alloy,” Korr.: Mater., Zashch., No. 12, 18 – 29(2010).

  13. S. A. Korpushenkov, A. I. Kulak, G. L. Shchukin, et al., “Microplasmic electrochemical deposition of composite coatings based on aluminum oxide and polyethylene on the surface of iron,” Fizikokhim. Poverkhn. Zashch. Mater., 46(4), 387 – 392 (2010).

    Google Scholar 

  14. J. Guo, L. Wang, S. C. Wang, et al., “Preparation and performance of a novel multifunctional plasma electrolytic oxidation composite coating formed on magnesium alloy,” J. Mater. Sci., 44, 1998 – 2006 (2009).

    Article  CAS  Google Scholar 

  15. A. G. Rakoch and I. V. Bardin, “Creation of multifunctional coatings on the surfaces of products made of light structural alloys,” in: Proc. of the All-Russian Youth School-Conference “Modern Problems of Metals Science” [in Russian], National University of Science and Technology “MISiS,” Moscow (2009), pp. 49 – 60.

  16. V. S. Rudnev, N. B. Kondrikov, L. M. Tyrina, et al., “Catalytically active structures on metals,” Kritich. Tekhnol. Membr., No. 4 (28), 63 – 67 (2005).

  17. X. Liu, G. Liu, and J. Xie, “Preliminary study on preparation of black ceramic coating firmed on magnesium alloy by micro-arc oxidation in carbon black pigment-contained electrolyte,” Procedia Engineering, 36, 261 – 269 (2012).

    Article  CAS  Google Scholar 

  18. V. S. Rudnev, A. A. Vaganov-Vil’kins, P. M. Nedozorov, et al., “Hybrid polytetrafluoroethyleneoxide coatings on aluminum and titanium formed by the method of plasma-electrolyte oxidation,” Fizikokhim. Poverkh. Zashch. Mater., 49(1), 95 – 103 (2013).

    Google Scholar 

  19. P. S. Gordienko, Formation of Coatings on Anode-Polarized Electrodes in Aqueous Electrolytes for the Sparking and Breakdown Potentials [in Russian], Dal’nauka, Vladivostok (1996).

    Google Scholar 

  20. A. L. Yerokhin, X. Nie, A. Leyland, et al., “Plasma electrolysis for surface engineering,” Surf. Coat. Technol., 122, 73 – 93 (1999).

    Article  CAS  Google Scholar 

  21. A. G. Rakoch. A. V. Dub, and A. A. Gladkova, Anodization of Light Alloys in Various Electric Modes. Plasma-Electrolyte Nanotechnology [in Russian], Staraya Basmannaya, Moscow (2012).

  22. P. S. Gordienko, V. A. Dostovalov, and A. V. Efimenko, Microarc Oxidation of Metals and Alloys [in Russian], FEFU, Vladivostok (2013).

    Google Scholar 

  23. A. K. Chubenko, A. I. Mamaev, Yu. Yu. Budnitskaya, and T. I. Dorofeeva, “Role of duration of current pulses as a factor controlling the physicomechanical characteristics of anode-oxide coatings by an example of D16 aluminum alloy,” Nauch.-Tekh. Vestn. Povolzh., 2, 62 – 64 (2013).

    Google Scholar 

  24. P. S. Gordienko, D. V. Dostovalov, I. G. Zhevtun, and I. A. Shabalin, “Microarc oxidation for the impulsive polarization in the galvanodynamic mode,” Èlectron. Obrab. Mater., 49, 35 – 42 (2013).

    CAS  Google Scholar 

  25. V. N. Malyshev, Hardening of Friction Surfaces by the Method of Microarc Oxidation [in Russian], Doctoral Degree Thesis (Engineering) Moscow (1999).

  26. S. Ya. Grikhiles and K. I. Tikhonov, Electrolytic and Chemical Coatings. Theory and Practice [in Russian], Khimiya, Leningrad (1990).

    Google Scholar 

  27. I. V. Suminov, P. N. Belkin, A. V. Èpel’fel’d, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plasma-Electrolyte Modification of the Surfaces of Metals and Alloys [in Russian], Tekhnosfera, Moscow (2011), Vol. 2.

    Google Scholar 

  28. Yu. A. Kuznetsov and V. Kh. Alimov, “Evaluation of the stability of electrolytes for the plasma-electrolyte oxidation of workpieces,” in: Agriscience is a Basis for the Successful Development of the AIC and Conservation of Ecosystems [in Russian], Volgograd SAU, Volgograd (2012), Vol. 2, pp. 251 – 254.

  29. V. F. Berdikov, “Application of corundum coatings on aluminum supports by the method of microarc oxidation,” Vestn. Mashinost., No. 4, 64 – 65 (1991).

  30. A. V. Krasikov, M. A. Markov, and A. D. Bykova, “Study of the formation of ceramic coatings by the microarc oxidation in borate electrolytes,” Izv. Sankt-Peterburg Gos. Tekhologich. Inst. (Tekh. Univ.), No. 36(62), 41 – 44 (2016).

  31. Yu. M. Lakhtin and V. P. Leont’eva, Materials Science [in Russian], Mashinostroenie, Moscow (1990).

    Google Scholar 

  32. V. I. Kubantsev, B. V. Farmakovskii, E. M. Ryazanov, et al., “Production of metallic composite protective coatings by the method of thermodiffusion in alternating electromagnetic fields,” Vopros. Materialoved., No. 3 (79), 47 – 59 (2014).

  33. D. A. Gerashchenkov, B. V. Farmakovskii, E. A. Samodelkin, and E. Yu. Gerashchenkova, “Investigation of the adhesion strength of composite reinforced coatings of the metal – nonmetal system obtained by the method of cold gas-dynamic spraying,” Vopros. Materialoved., No. 2 (78), 103 – 117 (2014).

  34. D. A. Gerashchenkov, A. F. Vasil’ev, B. V. Farmakovskii, A. Ch. Mashek, “Investigation of the temperature of flow in the process of cold gas-dynamic spraying of functional coatings,” Vopros. Materialoved., No. 1 (77), 87 – 96 (2014).

  35. I. V. Gorynin, B. V. Farmakovskii, D. A. Gerashchenkov, and A. F. Vasil’ev, A Method for the Production of Nanostructured Functionally Gradient Wear-Resistant Coatings [in Russian], Patent 2354749 of Russian Federation, No. 2007113724/02, Submitted 12.04.07, Publ. 10.05.09.

  36. B. V. Farmakovskii, D. A. Gerashchenkov, R. Yu. Bystrov, et al., “Wear-resistant functionally gradient coatings based on quasicrystals obtained by the method of supersound cold gas-dynamic spraying,” Vopros. Materialoved., 90(2), 130 – 135 (2017).

    Google Scholar 

  37. D. A. Gerashchenkov and A. S. Oryshchenko, “Aluminomatrix functional coatings with high microhardness obtained from composite powders of the Al–Sn + Al2O3 system by the method of cold gas-dynamic spraying,” Vopros. Materialoved., No. 3 (83), 100 – 107 (2015).

  38. M. A. Markov, A. V. Krasikov, D. A. Gerashchenkov, et al., “Synthesis of wear-resistant ceramic coatings on steel materials with complex application of the methods of supersound heterophase transfer and microarc oxidation,” Ogneupor. Tekh. Keram., No. 10, 30 – 35 (2016).

  39. A. M. Makarov, D. A. Gerashchenkov, and A. F. Vasil’ev, “Optimization of the parameters of the process of spraying of coatings by the GDCS method under the conditions of production on an example of aluminum powder,” Vopros. Materialoved., 90(2), 116 – 123 (2017).

    Google Scholar 

  40. M. A. Markov, A. A. Kukina, and Yu. A. Fadin, “Rapid evaluation of the tribological properties of wear-resistant materials,” Izv. Vuzov. Priborostr., 59(8), 641 – 644 (2016).

    Article  Google Scholar 

  41. Yu. A. Fadin, M. A. Markov, and S. S. Ordan’yan, “Evaluation of the wear resistance of materials based on aluminum oxide,” Ogneupor. Tekh. Keram., No. 4/5, 8 – 10 (2015).

Download references

The experimental investigations were carried out within the framework of the theme “Composition, Structure, and Properties of Structural and Functional Materials” on the equipment of the Center of Collective Use of the Scientific Equipment at the “Prometei” Center of Structural Materials of the “Kurchatov Institute” Sci.-Res. Center under the financial support of the Russian Ministry of Education and Science according to Agreement No. 14.595.21.0004 with unique identifier RFMEFI59517X0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Markov.

Additional information

Translated from Novye Ogneupory, No. 4, pp. 124 – 132, April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, M.A., Bykova, A.D., Krasikov, A.V. et al. Formation of Wear- and Corrosion-Resistant Coatings by the Microarc Oxidation of Aluminum. Refract Ind Ceram 59, 207–214 (2018). https://doi.org/10.1007/s11148-018-0207-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-018-0207-3

Keywords

Navigation