Skip to main content
Log in

Phase Composition and Microstructure of Reaction-Bonded Boron-Carbide Materials

  • Published:
Refractories and Industrial Ceramics Aims and scope

Porous boron-carbide billets containing different amounts of carbon (0 – 15 wt%) were infiltrated with molten silicon to produce dense materials (ρ = 99.6% of theoretical) from starting B4C powders with d0.5 90 and 12.5 μm. The phase composition and microstructure of the material were studied. A solid solution of boron carbide in silicon was determined to be present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. M. K. Aghajanian, B. N. Morgan, J. R. Singh, et al., “A new family of reaction bonded ceramics for armor applications,” in: Ceramic Armor Materials by Design, Ceramic Transactions, Vol. 134, J. W. McCauley, A. Crowson, et al. (eds.), American Ceramic Society, Westerville, Ohio (2002), pp. 527 – 539.

  2. S. Hayun, N. Frage, M. P. Dariel, et al., “Dynamic Response of B4C–SiC Ceramic Composites,” in: Ceramic Armor and Armor Systems II, Ceramic Transactions, Vol. 178, E. Medvedovski (ed.), American Ceramic Society, Westerville, Ohio (2006), pp. 147 – 156.

  3. S. Hayun, N. Frage, and M. P. Dariel, “The morphology of ceramic phases in BxC–SiC–Si infiltrated composites,” J. Solid State Chem., 179(9), 2875 – 2879 (2006).

    Article  CAS  Google Scholar 

  4. S. Hayun, D. Rittel, N. Frage, and M. P. Dariel, “Static and dynamic mechanical properties of infiltrated B4C–Si composites,” Mater. Sci. Eng., A, 487(1), 405 – 409 (2008).

    Article  Google Scholar 

  5. A. K. Suri, C. Subramanian, J. K. Sonber, and T. C. Murthy, “Synthesis and consolidation of boron carbide: a review,” Int. Mater. Rev., 55(1), 4 – 40 (2010).

    Article  CAS  Google Scholar 

  6. C. P. Zhang, H. Q. Rue, X. Y. Yue, and W. Wang, “Studies on the RBBC ceramics fabricated by reaction bonded SiC,” Rare Met. Mat. Eng., 40, 536 – 539 (2011).

    Google Scholar 

  7. S. Hayun, A. Weizmann, M. P. Dariel, and N. Frage, “Microstructural evolution during the infiltration of boron carbide with molten silicon,” J. Eur. Ceram. Soc., 30(4), 1007 – 1014 (2010).

    Article  CAS  Google Scholar 

  8. S. Hayun, H. Dilman, M. P. Dariel, et al., “The effect of carbon source on the microstructure and the mechanical properties of reaction bonded boron carbide,” in: Advances in Sintering Science and Technology, Ceramic Transactions, Vol. 209, R. K. Bordia and E. A. Olevsky (eds.), American Ceramic Society, (2010), p. 29.

  9. P. Barick, D. C. Jana, and N. Thiyagarajan, “Effect of particle size on the mechanical properties of reaction bonded boron carbide ceramics,” Ceram. Int., 39(1), 763 – 770 (2013).

    Article  CAS  Google Scholar 

  10. N. Golubeva, L. Plyasunkova, I. Kelina, E. Antonova, and A. Zhuravlev, “Study of reaction-bonded boron carbide properties,” Refract. Ind. Ceram., 55(5), 42 – 46 (2015).

    Article  Google Scholar 

  11. L. S. Sigl and H. J. Kleebe, “Core/rim structure of liquid-phase-sintered silicon carbide,” J. Am. Ceram. Soc., 76, 773 – 776 (1993).

    Article  CAS  Google Scholar 

  12. S. N. Perevislov, “Mechanism of liquid-phase sintering of silicon carbide and nitride with oxide activating additives,” Glass Ceram., 70(7/8), 265 – 268 (2013).

    Article  CAS  Google Scholar 

  13. D. D. Nesmelov and S. N. Perevislov, “Reaction sintered materials based on boron carbide and silicon carbide,” Glass Ceram., 71(9/10), 313 – 319 (2015).

    Article  CAS  Google Scholar 

  14. C. Zhang, H. Ru, H. Zong, et al., “Coarsening of boron carbide grains during the infiltration of porous boron carbide preforms by molten silicon,” Ceram. Int., 42(16), 18681 – 18691 (2016).

    Article  CAS  Google Scholar 

  15. X. Li, D. Jiang, J. Zhang, et al., “Reaction-bonded B4C with high hardness,” Int. J. Appl. Ceram. Technol., 13(3), 584 – 592 (2016).

    Article  Google Scholar 

  16. Y. Zheng, S. Wang, M. You, et al., “Fabrication of nanocomposite Ti(C, N)-based cermet by spark plasma sintering,” Mater. Chem. Phys., 92(1), 64 – 70 (2005).

    Article  CAS  Google Scholar 

  17. S. Hayun, A. Weizmann, H. Dilman, et al., “Rim region growth and its composition in reaction bonded boron carbide composites with core-rim structure,” J. Phys.: Conf. Ser., 176(1), 012009 (2009).

    Google Scholar 

  18. S. Hayun, A.Weizmann, M. P. Dariel, and N. Frage, “The effect of particle size distribution on the microstructure and the mechanical properties of boron carbide-based reaction-bonded composites,” Int. J. Appl. Ceram. Technol., 6(4), 492 – 500 (2009).

    Article  CAS  Google Scholar 

  19. S. N. Perevislov, A. S. Lysenkov, and S. V. Vikhman, “Effect of Si additions on the microstructure and mechanical properties of hot-pressed B4C,” Inorg. Mater., 53(4), 376 – 380 (2017).

    Article  CAS  Google Scholar 

  20. S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Glass Ceram., 73(7/8), 249 – 252 (2016).

    Article  CAS  Google Scholar 

  21. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, and M. V. Tomkovich, “Hot-pressed ceramic SiC?YAG materials,” Inorg. Mater., 53(2), 206 – 211 (2017).

    Article  Google Scholar 

  22. Yu. F. Kargin, A. S. Lysenkov, S. N. Ivicheva, et al., “Microstructure and properties of silicon nitride ceramics with calcium aluminate additions,” Inorg. Mater., 46(7), 799 – 803 (2010).

    Article  CAS  Google Scholar 

  23. Yu. F. Kargin, A. S. Lysenkov, S. N. Ivicheva, et al., “Hot-pressed Si3N4 ceramics containing CaO–Al2O3–AlN modifying additive,” Inorg. Mater., 48(11), 1158 – 1163 (2012).

    Article  CAS  Google Scholar 

  24. V. Sirota, O. Lukianova, V. Krasilnikov, et al., “Microstructural and physical properties of magnesium oxide-doped silicon nitride ceramics,” Results Phys., 6, 82 – 83 (2016).

    Article  Google Scholar 

  25. L. Chen, W. Lengauer, P. Ettmayer, et al., “Fundamentals of liquid phase sintering for modern cermets and functionally graded cemented carbonitrides (FGHCC),” Int. J. Refract. Met. Hard Mater., 18(6), 307 – 322 (2000).

    Article  CAS  Google Scholar 

  26. N. Frage, L. Levin, and M. P. Dariel, “The effect of the sintering atmosphere on the densification of B4C ceramics,” J. Solid State Chem., 177(2), 410 – 414 (2004).

    Article  CAS  Google Scholar 

  27. D. Mallick, T. K. Kayal, J. Ghosh, et al., “Development of multi-phase B–Si–C ceramic composite by reaction sintering,” Ceram. Int., 35(4), 1667 – 1669 (2009).

    Article  CAS  Google Scholar 

  28. M. P. Dariel and N. Frage, “Reaction bonded boron carbide: Recent developments,” Adv. Appl. Ceram., 111(5/6), 301 – 310 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Russian Foundation for Basic Research Project No. 17-03-00863\18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Additional information

Translated from Novye Ogneupory, No. 4, pp. 96 – 100, April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N., Shcherbak, V. & Tomkovich, M.V. Phase Composition and Microstructure of Reaction-Bonded Boron-Carbide Materials. Refract Ind Ceram 59, 179–183 (2018). https://doi.org/10.1007/s11148-018-0202-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-018-0202-8

Keywords

Navigation