Refractories and Industrial Ceramics

, Volume 59, Issue 2, pp 156–162 | Cite as

Effect of SiC-Filler Refinement by Different Methods on Heat-Resistant Medium-Cement Concrete Properties

  • I. PundieneEmail author
  • I. Prantskevichene
  • A. Kairite

Results are provided for a study of the properties of SiC refined by different methods (milling and disintegration) on morphology of the particles obtained. It is established that SiC refinement by disintegration in an amount of 10 – 20% within the composition of heat-resistant concrete compared with a similar amount of milled SiC improves concrete mechanical properties after hardening and firing from 11 to 23%, reduces its shrinkage by up to 25%, and improves thermal shock resistance by up to 20%.


SiC-filler filler refinement method aluminate cement heat-resistant concrete 


  1. 1.
    A. P. Luz, M. Huger, and V. C. Pandolfelli, “Hot elastic modulus of Al2O3–SiC–SiO2–C castables,” Ceram. Internat., 37, 2335 – 2345 (2011).CrossRefGoogle Scholar
  2. 2.
    S. Goberis, I. Pundene, V. Antonovich, and R. Stonis,”Physicomechanical properties of medium-cement refractory castables containing chamotte-silicon carbide fillers tested for practical applications,” Refract. Indust. Ceram., 46(5), 333 – 337 (2005).CrossRefGoogle Scholar
  3. 3.
    V. A. Kamenskikh, I. D. Kashcheev, N. A. Mityushov, et al., “Silicon carbide refractory castables,” Refract. Indust. Ceram., 46(6), 333 – 337 (2005).Google Scholar
  4. 4.
    C. Durmus, R. Mingu, and S. Ozgen, “ Evaluation of SiC additives in alumina based castable refractories,” Conference on Refractory Castables, Praha, 23 – 24 November (2001).Google Scholar
  5. 5.
    M. H. Amin, M. A. Ebrahimabadi, and M. R. Rahimipour, “The effect of nanosized carbon black on the physical and thermomechanical properties of Al2O3–SiC–SiO2–C composite,” J. Nanomaterials — Special issue on nanocomposites for engineering applications, 2009, 1 – 5 (2009).Google Scholar
  6. 6.
    A. P. Luz, F. A. O. Valenzuela, V. G. Domiciano, et al., “Thermo-mechanical-chemical characterization of high-carbon-containing refractory castables,” J. Technical Association of Refractories, Japan. 29(2), 3 – 7 (2009).Google Scholar
  7. 7.
    A. M. Hundere, B. Myhre, B. Sandberg, et al.], “Norway castables for kiln furniture,” Proc. of 3rd International Symposium on Refractories (1998).Google Scholar
  8. 8.
    O. Bahloul, T. Chotard, M. Huger, et al., “Young’s modulus evolution at high temperature of SiC refractory castables,” J. Mater. Sci., 45, 3652 – 3660 (2010).CrossRefGoogle Scholar
  9. 9.
    E. Karamian and A. Monshi, “Influence of additives on nano-SiC whisker formation in alumina silicate–SiC–C monolithic refractories,” Ceram. Internat., 36, 811 – 816 (2010).CrossRefGoogle Scholar
  10. 10.
    A. Shishkin, A. Korjakins, and V. Mironovs, “Using of cavitation disperser, for porous ceramic and concrete material preparation,” World Academy of Science, Engineering and Technology International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 9(5), 540 – 543 (2015).Google Scholar
  11. 11.
    P. Peetsalu, D. Goljandin, P. Kulu, et al., “Micropowders produced by disintegrator milling,” Powder Metall., 3, 99 – 110 (2003).Google Scholar
  12. 12.
    Alcoa Calcium Aluminate Cement test Methods Brochure. Revision 5. Frankfurt: Available through Alcoa Industrial Chemicals (1999).Google Scholar
  13. 13.
    V. Antonovich, M. Shyukshta, I. Pundene, and R. Stonis, “Procedural elements in estimation of the thermal shock resistance of different types of refractory concrete based on chamotte filler,” Refract. Indust. Ceram., 52(1), 70 – 74 (2011).CrossRefGoogle Scholar
  14. 14.
    S. Otroj, M. A. Bahrevar, F. Mostarzadeh, et al., “The effect of deflocculants on the self-flow characteristics of ultra-low-cement castables in Al2O3–SiC–C system,” Ceram. Internat., 31, 647 – 653 (2005).CrossRefGoogle Scholar
  15. 15.
    S. P. Mehrotra, T. C. Alex, G. Greifzu, et al., “Mechanical activation of gibbsite and boehmite: new findings and their implications,” Trans. Indian Institute of Metals, 69(1), 51 – 59 (2016).CrossRefGoogle Scholar
  16. 16.
    K. Terada and E. Yonemochi, “Physicochemical properties and surface free energy of ground talc,” Solid State Ionics, 172, 459 – 462 (2004).CrossRefGoogle Scholar
  17. 17.
    J. Cao, Y. Fang, R. Fan, et al., “Influence of mechanochemical effect on physical properties of boiler bottom slag,” Mater. Sci. Technol., 23(4), 111 – 114 (2015).Google Scholar
  18. 18.
    G. Bumanis and D. Bajarea, “Compressive strength of cement mortar affected by sand microfiller obtained with collision milling in disintegrator,” Procedia Engineering, 172, 149 – 156 (2017).CrossRefGoogle Scholar
  19. 19.
    V. N. Sokov and V. V. Sokov, “High temperature heat insulation of a new generation,” Industrial heat insulation. Use and production: Sci.-Tech. Conf., Moscow (2004), OAO Teploproekt (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Heat Insulation Scientific Institute of Gediminas Vilnius Technical UniversityVilniusLithuania

Personalised recommendations