Minimum TiB2 Content in a Composite Cathode Wetted with Aluminum

The minimum content of functional component (titanium borideTiB2) in cathodic refractory material that provides wetting with molten aluminum is substantiated. It is established that total cathode wetting with aluminum is observed with some minimum content of TiB2 in a powder composite (16 – 18 vol.%), when according to occurrence theory there is formation of an “infinite cluster”, i.e., a bonded percolation network of titanium boride particles. The volume of wetted composite containing a fixed amount (for example, 1 kg) of TiB2 does not depend on its phase composition and porosity, but is determined by the diboride volume content. A TiB2 content in the range 18 – 20 vol.% should be considered the optimum that creates reliable continuous wetting of a composite surface.

This is a preview of subscription content, log in to check access.

Fig. 1.

References

  1. 1.

    J. Li, X.-j. Lu, Y.-q. Lai, et al., “Research progress in TiB2 wettable cathode for aluminum reduction,” JOM, No. 8, 32 – 37 (2008).

  2. 2.

    J. Keniry, “The economics of inert anodes and wettable cathodes for aluminum reduction cells,” JOM, No. 5, 43 – 47 (2001).

  3. 3.

    H. A. Øye, V. de Nora, J-J. Duruz, and G. Johnston, “Properties of colloidal alumina bonded TiB2 coating on carbon cathode materials,” Light Metals, 279 – 286 (1997).

  4. 4.

    L. G. Boxall, W. M. Buchta, A. V. Cooke, D. C. Nagle, and D. W. Townsend, US Patent 4466996, MPK B 05 D 5/12, C 25 C 3/06, C 25 B 11/12. Aluminum cell cathode coating method, Claim 07.22.82, Pub. 08.21.84.

  5. 5.

    J. A. Sekhar, J. J. Duruz, and V. de Nora, US Patent 5753163 US, MPK B 28 B 1/26. Production of bodies of refractory borides, Claim 08.28.95, Publ. 05.19.98.

  6. 6.

    M. O. Ibrahiem, T. Foosnes, and H. A. Øye, “Properties of pitch and furan-based TiB2–C cathodes,” Light Metals, 1013 – 1018 (2008).

  7. 7.

    V. V. Ivanov. A. V. Golounin, V. M. Denisov, et al., “Inorganic binder for material of an aluminum electrolyzer wetted cathode,” Ogneupory Tekhn. Keram., No. 4/5, 17 – 24 (2010).

  8. 8.

    V. V. Ivanov, S. D. Kirik, A. A. Shubin, et al., “Thermolysis of acidic aluminum chloride solution and its products,” Ceram. Internat., 39, 3843 – 3848 (2013).

    Article  Google Scholar 

  9. 9.

    V. V. Ivanov, A. A. Chernousov, and I. A, Blokhina, RU Patent 2518032 RU, C 25 C 3/06. Composition for material of aluminum alectrolyzer cathode wettable coating. Claim. 01.10.13, Publ. 06.10.14, Bull. No. 16.

  10. 10.

    A. V. Cooke, L. G. Boxall, D. C. Nagle, and W. M. Buchta, “Carbon/TiB2 composite for aluminum reduction cells,” Extd. Abstr. Program Bienn. Conf. Carbon, No. 11, 456 – 457 (1985).

  11. 11.

    B. I. Shklovskii and A. L. Éfros, “Theory of occurrence and conductivity of strongly inhomogeneous media,” Uspekhi. Fiz. Nauk, 117, No. 3, 401 – 434 (1975).

    Article  Google Scholar 

  12. 12.

    G. N. Dul’nev and V. V. Novikov, Transfer Processes in Inhomogeneous Media [in Russian], Énergoatomizdat, Leningrad (1991).

    Google Scholar 

  13. 13.

    G. N. Dul’nev and V. V. Novikov, “Conductivity of inhomogeneous systems,” Onzh.-Fiz. Zh. 36(5), 901 – 909 (1979).

    Google Scholar 

  14. 14.

    D. I. Iudin and E. V. Koposov, Fractals: From Simple to Complex [in Russian], NNGASu, N. Novgorod (2012).

  15. 15.

    G. R. Ruschau and R. E. Newnham, “Critical volume fractions in conductive composites,” J. Compos. Mater., 26(18), 2727 – 2735 (1992).

    Article  Google Scholar 

  16. 16.

    P. M. Volovich, L. Varral’e, Z. N. Skvartsova, and V. Yu. Traskin, “Percolation model of grain boundary wetting in polycrystalline materials,” Ross. Khim. Zh.(Zh. Ros. Khim. Obskck. im D. I. Mendeleeva), LII(1), 13 – 20 (2008).

    Google Scholar 

  17. 17.

    Yu. P. Zarichnyak, S. S. Ordan’yan, A. N. Soklov, and E. K. Stepanenko, “Dimensionaleffects in percolation processes,” Poroshk. Metall., No. 7, 64 – 71 (1986).

  18. 18.

    G. N. Dul’nev, V. I. Malarev, and V. V. Novikov, “Effect of particle size on critical value of conducting phase concentration in powder materials,” Poroshk. Metall., No. 1, 65 – 69 (1992).

  19. 19.

    C.-W. Nan, “Physics of inhomogeneous inorganic materials,” Progress in Material Science, 37, 1 – 116 (1993).

    Article  Google Scholar 

Download references

Work was performed within an agreement with the Russian Ministry of Education and Science No. 02.G25.31.018 (project “development of superpower energy-effective technology for preparing aluminum RA-550”).

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. V. Sukhodoeva.

Additional information

Translated from Novye Ogneupory, No. 7, pp. 58 – 62, July, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.V., Polyakov, P.V., Nagibin, G.E. et al. Minimum TiB2 Content in a Composite Cathode Wetted with Aluminum. Refract Ind Ceram 58, 410–414 (2017). https://doi.org/10.1007/s11148-017-0120-1

Download citation

Keywords

  • aluminum electrolysis
  • wetted cathode material (WCM)
  • composite material
  • titanium diboride
  • “infinite cluster” (IC)
  • percolation