Refractories and Industrial Ceramics

, Volume 58, Issue 3, pp 331–337 | Cite as

Investigation of the Change in the Phase Composition, Properties, and Hydraulic Activity During the Thermal Treatment of Magnesian Materials


The effect of the heat treatment regime on the hydraulic activity of magnesian materials was determined from the heat release during interaction with water. Hydration processes proceed efficiently, hardening structures are formed after calcination of the initial magnesian materials in the range of 500 – 800°C. Therefore, in the production of hydraulically active magnesium oxide used to make the magnesian binder, it is necessary to bake magnesian materials regardless of their nature at low or moderate temperatures in the range of 500 – 800°C. The change in the structure and properties of magnesian materials during heat treatment has a great influence on the processes of sintering refractory materials.


magnesian materials magnesium oxide heat treatment specific surface area phase composition hydraulic activity 


  1. 1.
    V. G. Sivash, V. A. Perepelitsin, and N. A. Mityushov, Fused Periclase [in Russian], Izd-vo Ural’skiy Rabochiy, Ekaterinburg (2001) 584 p.Google Scholar
  2. 2.
    G. G. Galimov, A. Yu. Sidorov, and A. A. Nikiforov, “Investigation of the influence of the difference in the temperatures of decomposition of the initial compounds into magnesium and aluminum oxides on the intensity of the spinel formation reaction” [in Russian], Ogneupory i Tekhnicheskaya Keramika, No. 9, 21 – 26 (2014).Google Scholar
  3. 3.
    V. N. Zyryanova and G. I. Berdov, “Magnesian binders from the waste products of brucite enrichment” [in Russian], Stroitel’nye Materialy, No. 4, 61 – 64 (2006).Google Scholar
  4. 4.
    V. A. Lotov and V. A. Kutugin, Technology of Materials Based on Silicate Dispersed Systems: Textbook [in Russian], Publishing house of the Tomsk Polytechnic University, Tomsk (2011) 211 p.Google Scholar
  5. 5.
    Russian Federation Patent 2475714, “Differential microcalorimeter and a method for measuring heat release” [in Russian], Yu. A. Ivanov and V. A. Lotov, No. 2010139028/28; Appl. September 22, 2010; Publ. February 20, 2013, Bull. No. 5.Google Scholar
  6. 6.
    N. A. Mitina, V. A. Lotov, and A. V. Sukhushina, “Influence of heat treatment mode of various magnesia rocks on their properties,” Procedia Chem., 15, 213 – 218 (2015).CrossRefGoogle Scholar
  7. 7.
    V. I. Korneev, A. P. Sizonenko, I. I. Medvedeva, and E. P. Povikov, “Aparticularly fast-hardening magnesian binder. Part 1.” [in Russian], Cement, No. 2, 25 – 28 (1997).Google Scholar
  8. 8.
    T. Lu, T. Arash, and Yu Jianglong, “An experimental study on thermal decomposition behavior of magnesite,” J. Therm. Anal. Calorim., 118, 1577 – 1584 (2014).CrossRefGoogle Scholar
  9. 9.
    I. D. Kashcheev, K. G. Zemlyanoi, V. M. Ust’yantsev, and E. A. Voskretsova, “Study of thermal decomposition of natural and synthetic magnesium compounds,” Refract. Ind. Ceram., 56(5), 522 – 529 (2016).CrossRefGoogle Scholar
  10. 10.
    A. Ya. Vayvad, Magnesian Binders [in Russian], Zinatne, Riga (1971) 331 p.Google Scholar
  11. 11.
    T. N. Chernykh, A. A. Orlov, L. Y. Kramar, et al., “Temperature reduction during brucite-based magnesia cement production,” Mag. Civil Eng., 38(3), 29 – 35 (2013).CrossRefGoogle Scholar
  12. 12.
    K. Nahdi, F. Rouquerol, and A. M. Trabelsi, “Mg(OH)2 dehydroxylation: a kinetic study by controlled rate thermal analysis (CRTA),” Solid State Sci., 11(5), 1028 – 1034 (2009).CrossRefGoogle Scholar
  13. 13.
    L. A. Hollingbery and T. R. Hullb, “The thermal decomposition of natural mixtures of huntite and hydromagnesite,” Thermochim. Acta, 528, 45 – 52 (2012).CrossRefGoogle Scholar
  14. 14.
    R. Hongrui, Ch. Zhen,W. Yulong, et al., “Thermal characterization and kinetic analysis of nesquehonite, hydromagnesite, and brucite, using TG–DTG and DSC techniques,” J. Therm. Anal. Calorim., 115, 1949 – 1960 (2014).CrossRefGoogle Scholar
  15. 15.
    A. Botha and C. A. Strydom, “DTA and FT-IR analysis of the rehydration of basic magnesium carbonate,” J. Therm. Anal. Calorim., 71, 987 – 995 (2003).CrossRefGoogle Scholar
  16. 16.
    C. Unluer and A. Al-Tabbaa, “Characterization of light and heavy hydrated magnesium carbonates using thermal analysis,” J. Therm. Anal. Calorim., 115, 595 – 607 (2014).CrossRefGoogle Scholar
  17. 17.
    C. Unluer and A. Al-Tabbaa, “Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements,” Cement Concrete Res., 54, 87 – 97 (2013).CrossRefGoogle Scholar
  18. 18.
    G. F. Hüttig and W. Frankenstein, “Beiträge zur Kenntnis der Oxydhydrate. XVIII. Zur Kenntnis des Systems Magnesiumoxyd/Wasser,” Zeitschrift für anorganische und allgemeine Chemie, 185, 403 – 412 (1930).Google Scholar
  19. 19.
    V. A. Lotov, “The driving force behind the processes of hydration and hardening of cement” [in Russian], Sukhie Stroitel’nye Smesi, No. 6, 33 – 35 (2012).Google Scholar
  20. 20.
    T. N. Chernykh, “Physicochemical laws in obtaining energy-efficient magnesian binders with improved characteristics and materials based on them” [in Russian], diss. abstract, Tomsk (2016) 42 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.FGBOU VO “National Research Tomsk Polytechnic University”TomskRussia

Personalised recommendations