Refractories and Industrial Ceramics

, Volume 58, Issue 3, pp 304–311 | Cite as

Ultra-High-Temperature Ceramics Based on HfB2 – 30% SiC: Production and Basic Properties

  • P. S. Sokolov
  • A. V. Arakcheev
  • I. L. Mikhal’chik
  • L. A. Plyasunkova
  • I. F. Georgiu
  • T. S. Frolova
  • R. A. Mironov
  • A. V. Lanin
  • A. O. Zabezhailov
  • I. Yu. Kelina
  • M. Yu. Rusin
Article
  • 44 Downloads

Dense HfB2– 30 vol.% SiC ceramics were obtained from commercially available powders by the hot-pressing method. Their basic physicomechanical properties were measured: the flexural strength at room temperature was 300 – 700 MPa, the Vickers microhardness reached 20 GPa, the critical stress intensity factor was up to 5.9 MPa·m1/2. Thermal expansion and resistance to oxidation were measured in a wide temperature range.

Keywords

ultra-high-temperature ceramics (UHTCs) ceramics based on HfB2–SiC hot pressing (HP) hafnium diboride silicon carbide 

Notes

The authors thank N. A. Golubeva, G. M. Bagreeva, P. Yu. Yakushkia, and A. P. Metleva for their help and assistance in carrying out the research work.

References

  1. 1.
    Ultra-High Temperature Ceramics. Materials for Extreme Environment Applications, Ed. byW. G. Fahrenholtz, E. J.Wuchina, W. E. Lee, and Y. Zhou, Wiley, New Jersey (2014) 441 p.Google Scholar
  2. 2.
    T. H. Squire and J. Marschall, “Material property requirements for analysis and design of UHTC components in hypersonic application,” J. Europ. Ceram. Soc., 30, 2239 – 2251 (2010).CrossRefGoogle Scholar
  3. 3.
    M. Mallik, A. J. Kailath, K. K. Ray, and R. Mitra, “Electrical and thermophysical properties of ZrB2 and HfB2 based composites,” J. Europ. Ceram. Soc., 32, 2545 – 2555 (2012).CrossRefGoogle Scholar
  4. 4.
    J. Marschall, D. C. Erlich, H. Manning, et al., “Microhardness and high-velocity impact resistance of HfB2/SiC and ZrB2/SiC composites,” J. Mater. Sci., 39, 5959 – 5968 (2004).CrossRefGoogle Scholar
  5. 5.
    L. Weng, W. Han, and Ch. Hong, “Fabrication and thermal shock resistance of HfB2 – SiC composite with B4C additives,” Materials Science-Poland, 29, 248 – 252 (2011).CrossRefGoogle Scholar
  6. 6.
    J.-X. Liu, G.-J. Zhang, F.-F. Xu, et al., “Densification, microstructure evolution and mechanical properties of WC doped HfB2–SiC ceramics,” J. Europ. Ceram. Soc., 35, 2707 – 2714 (2015).CrossRefGoogle Scholar
  7. 7.
    P. S. Sokolov, A. V. Arakcheev, I. L. Mikhal’chik, et al., “Ultra-high-temperature ceramics based on ZrB2–SiC: preparation and basic properties” [in Russian], Novye Ogneupory, No. 1, 33 – 39 (2017).Google Scholar
  8. 8.
    L. A. Chevykalova, I. Yu. Kelina, I. L. Mikhal’chik, et al., “Preparation of ultra-high temperature ceramic material based on zirconium boride by SPS method,” Refract. Ind. Ceram., 54(6), 455 – 462 (2013).Google Scholar
  9. 9.
    E. Zapata-Solvas, D. D. Jayaseelan, H. T. Lin, et al., “Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering,” J. Europ. Ceram. Soc., 33, 1373 – 1386 (2013).Google Scholar
  10. 10.
    F. Monteverde, “Ultra-high temperature HfB2 – SiC ceramics consolidation by hot-pressing and spark plasma sintering,” J. Alloys Compd., 428, 197 – 205 (2007).CrossRefGoogle Scholar
  11. 11.
    G.-J. Zhang, W.-M. Guo, D.-W. Ni, and Y.-M. Kan, “Ultra-high temperature ceramics (UHTCs) based on ZrB2- and HfB2 systems: powder synthesis, densification and mechanical properties,” Journal of Physics: Conference Series, 176, 012041 (2009).Google Scholar
  12. 12.
    S. J. Lee, E. S. Kang, S. S. Baek, and D. K. Kim, “Reactive hot-pressing and oxidation behavior of Hf-based ultra-high-temperature ceramics,” Surf. Rev. Lett., 17, 215 – 221 (2010).CrossRefGoogle Scholar
  13. 13.
    F. Monteverde, C. Melandri, and S. Guicciardi, “Microstructure and mechanical properties of an HfB2 – 30 vol.% SiC composite consolidated by spark plasma sintering,” Mater. Chem. Phys., 100, 513 – 519 (2006).CrossRefGoogle Scholar
  14. 14.
    F. Monteverde and A. Bellosi, “Microstructure and properties of an HfB2 – SiC composite for ultra-high temperature application,” Adv. Eng. Mater., 6, 331 – 336 (2004).CrossRefGoogle Scholar
  15. 15.
    T. I. Serebryakova, V. A. Neronov, and P. D. Peshev, High-Temperature Borides [in Russian], Metallurgiya, Moscow (1991) 368 p.Google Scholar
  16. 16.
    G. G. Gnesin, Silicon Carbide Materials [in Russian], Metallurgiya, Moscow (1977) 216 p.Google Scholar
  17. 17.
    H. Wang, D. Chen, C. A. Wang, et al., “Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process,” Int. J. Refract. Met. & Hard Mater., 27, 1024 – 1026 (2009).CrossRefGoogle Scholar
  18. 18.
    M. Singh and R. Asthana, “Joint of ZrB2-based ultra-high temperature ceramic composites to Cu-clad-molybdenum for advanced aerospace application,” International Journal of Applied Ceramics Technology, 6, 113 – 133 (2009).CrossRefGoogle Scholar
  19. 19.
    V. I. Rumyantsev, N. Yu. Kovelenov, N. Yu. Korableva, et al., “Consolidation of Ceramic Composite Materials in the TiN-TiB2 System” [in Russian] (2011), www.virial.ru.
  20. 20.
    E. Zapata-Solvas, D. D. Jayaseelan, P. M. Brown, and W. E. Lee, “Effect of oxidation on room temperature strength of ZrB2- and HfB2-based ultrahigh temperature ceramics,” Advances in Applied Ceramics, 114, 407 – 417 (2015).CrossRefGoogle Scholar
  21. 21.
    E. P. Simonenko, “New approaches to the synthesis of refractory nanocrystalline carbides and oxides and the production of ultra-high-temperature ceramic materials based on hafnium diboride” [in Russian], dis., (2016) www.igic.rac.ru.
  22. 22.
    D. V. Grashchenkov, O. Yu. Sorokin, Yu. E. Lebedeva, and M. L. Vaganova, “Features of sintering of refractory ceramics based on HfB2 by hybrid spark plasma sintering” [in Russian], Zh. Prikl. Khim., 88(3), 379 – 386 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • P. S. Sokolov
    • 1
  • A. V. Arakcheev
    • 1
  • I. L. Mikhal’chik
    • 1
  • L. A. Plyasunkova
    • 1
  • I. F. Georgiu
    • 1
  • T. S. Frolova
    • 1
  • R. A. Mironov
    • 1
  • A. V. Lanin
    • 1
  • A. O. Zabezhailov
    • 1
  • I. Yu. Kelina
    • 1
  • M. Yu. Rusin
    • 1
  1. 1.ORPE “Technologiya” named after A. G. Romashin, a State Research Center of the Russian FederationObninskRussia

Personalised recommendations