Skip to main content
Log in

Study of Preparation of Prescribed Pore Configuration in Zirconium Dioxide Ceramic Due to Carbamide Directional Solidification

  • Published:
Refractories and Industrial Ceramics Aims and scope

The possibility is demonstrated of preparing porous ceramic based on zirconium dioxide micro- and nanopowder using crystallization of carbamide in a suspension. Different suspension cooling regimes are studied for oxide powders (in air, in a freezing chamber, in snow). It is shown that sintered ceramic porosity and pore size depend directly on suspension composition and cooling method. As a result of this ceramic is prepared with porosity of 30 – 60% with pore diameter of 0.2 – 200 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. R. Studart, U. T. Gonzenbach, E. Tervoort, et al., “Processing routes to macroporous ceramics: a review,” J. Amer. Ceram. Soc., No. 89 (6), 1771 – 1789 (2006).

  2. U. G. K. Wegst, M. Schecter, and A. E. Donius, “Biomaterials by freeze casting,” Philosophical Trans. Roy. Soc. A: Physical, Mathematical and Engineering Sciences, 368(1917), 2099 – 2121 (2010).

  3. U. Balachandran, T. H. Lee, and C. Y. Park, “Dense cermet membranes for hydrogen separation,” Separation and Purification Technology, 121, 54 – 59 (2014).

    Article  Google Scholar 

  4. Q. B. Chang, Y. L. Yang, X. Z. Zhang, et al., “Effect of particle size distribution of raw powders on pore size distribution and bending strength of Al2O3 microfiltration membrane supports,” J. Europ. Ceram. Soc., 34(15), 3819 – 3825 (2014).

    Article  Google Scholar 

  5. P. S. Liu and G. F. Chen, Porous Materials. Processing and Application, Elsevier (2014).

  6. H. C. Aran, H. Klooster, J. M. Jani, et al., “Influence of geometrical and operational parameters on the performance of porous catalytic membrane reactors,”Chem. Eng. J., 207, 814 – 821 (2012).

  7. A. Cheraitia, A. Ayral, A. Julbe, et al., “Synthesis and characterization of microporous silica-alumina membranes,” J. Porous Mater., 17(3), 259 – 263 (2010).

    Article  Google Scholar 

  8. K. Araki and J.W. Halloran, “Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique,” J. Amer. Ceram. Soc., 88(5), 1108 – 1114 (2005).

    Article  Google Scholar 

  9. Y. F. Tang, S. Qiu, Q.Wu, and C. Miao, “Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields,” J. Europ. Ceram. Soc., 36(5), 1233 – 1240 (2016).

    Article  Google Scholar 

  10. Y. Zhang, L. Hu, J. Han, and Z. Jiang, “Freeze casting of aqueous alumina slurries with glycerol for porous ceramics,” Ceram. Internat., 36(2), 617 – 621 (2010).

    Article  Google Scholar 

  11. S. G. Tresvyatskii, V. D. Tkachenko, and E. P. Garmash, “Grain size dependence of Strength of porous ceramic materials of skeleton structure,” Fiz.-Khim. Mekhan. Materialov, 12, 56 – 60 (1976).

    Google Scholar 

  12. H.-Y. Song, S. Islam, and B.-T. Lee, “A novel method to fabricate porous hydroxyapatite body using ethanol bubbles in a viscous slurry,” J. Amer. Ceram. Soc., 91(9), 3125 – 3127 (2008).

    Article  Google Scholar 

  13. R. M. Khattab, M. M. S.Wahsh, and N. M. Khalil, “Preparation and characterization of porous alumina ceramics through starch consolidation casting techniques,” Ceram. Internat., 38(6), 4723 – 4728 (2012).

    Article  Google Scholar 

  14. Z. Zivcova-Vlckova, J. Locs, M. Keuper, et al., “Microstructural comparison of porous oxide ceramics from the system Al2O3 – ZrO2 prepared with starch as a pore-forming agent,” J. Europ. Ceram. Soc., 32(10), 2163 – 2172 (2012).

    Article  Google Scholar 

  15. E. Mostafavi and A. Ataie, “Destructive interactions between pore forming agents and matrix phase during the fabrication process of porous BiFeO3 ceramics,” J. Mater. Sci. Technol., 31(8), 798 – 805 (2015).

    Article  Google Scholar 

  16. K. Schwartzwalder and A. V. Somers, US Pat. 3090094. Method of manufacturing Porous Ceramic (1963).

  17. Z.-Y. Deng, T. Fukasawa, M. Ando, et al., “High-surface-area alumina ceramics fabricated by the decomposition of Al(OH)3,” J. Amer. Ceram. Soc., No. 84, 485 – 491 (2001).

  18. A. R. Studart, U. T. Gonzenbach, E. Tervoort, et al., “Processing routes to macroporous ceramics: a review,” J. Amer. Ceram. Soc., No. 89 (6) 1771 – 1789 (2006).

  19. A. Harabi, F. Zenikheri, B. Boudaira, et al., “A new and economic approach to fabricate resistant porous membrane supports using kaolin and CaCO3,” J. Europ. Ceram. Soc., 34(5), 1329 – 1340 (2014).

    Article  Google Scholar 

  20. S. Deville, “Freeze-casting of porous ceramics: Areview of current achievements and issues,” Advanced Eng. Mater., 10(3), 155 – 169 (2008).

    Article  Google Scholar 

  21. L. Qian and H. F. Zhang, “Controlled freezing and freeze drying: a versatile route for porous and micro/nano-structured materials,” J. Chem. Technol. Biotechnol., 86(2), 172 – 184 (2011).

    Article  Google Scholar 

  22. A. Cheraitia, A. Ayral, A. Julbe, et al., “Synthesis and characterization of microporous silica-alumina membranes,” J. Porous Mater., 17(3), 259 – 263 (2010).

    Article  Google Scholar 

  23. S. Vijayan, R. Narasimman, and K. Prabhakaran, “Dispersion and setting of powder suspensions in concentrated aqueous urea solutions for the preparation of porous alumina ceramics with aligned pores,” J. Amer. Ceram. Soc., 96(3), 2779 – 2784 (2013).

    Article  Google Scholar 

  24. O. N. Kulish, S. A. Kuzhevatov, E. V. Borodina, and E. V. Kutsenko, “Prospects for developing technology for noncatalytic cleaning of flue gases from nitrogen,” Zashch. Okruzh. Sredy Neftegaz Komplekse, No. 3, 49 – 54 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kamyshnaya.

Additional information

Translated from Novye Ogneupory, No. 9, pp. 33 – 38, September, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamyshnaya, K.S., Khabas, T.A. Study of Preparation of Prescribed Pore Configuration in Zirconium Dioxide Ceramic Due to Carbamide Directional Solidification. Refract Ind Ceram 57, 490–495 (2017). https://doi.org/10.1007/s11148-017-0010-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-017-0010-6

Keywords

Navigation