Skip to main content
Log in

The Investigation of Grindability of Refractory Wastes in Their Recycling

  • RAW MATERIALS
  • Published:
Refractories and Industrial Ceramics Aims and scope

The ceramic industry is one that stands out in the use of industrial tailings, replacing pure raw materials by some of these materials. Refractory wastes are ground and used in certain proportions in refractory production. This study is aimed at determining the grindability of recycling of refractory wastes and their kinetic behavior. The breakage behaviors were determined experimentally by using the mono-size fraction technique. The mono-size samples of –2360 + 1700 μm, –1180 + 850 μm, and –425 + 300 μm were ground batchwise for the selected periods to determine the Si. At the end of each grinding period, using the material at different mono-size groups, we determined the particle size distributions and breakage behaviors of the products. Depending on the grinding periods in both of the mills, energy consumption and d80 values of grinding products obtained by various grinding periods were determined. It was found that as the size group decreases, the breakage speed decreases in the ball mill and increases in the stirred mill. An increase in the grinding period results in an increase in energy consumption, but there is no significant change in d80 size in grinding of refractory waste in the ball mill. However, it was found that d80 size decreases significantly with increasing grinding period in the stirred mill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. F. C. Bond, “Third theory of comminution,” Trans. AIME, 193, 484 – 494 (1952).

    Google Scholar 

  2. M. J. Mankosa, G. T. Adel, and R. H. Yoon, “Effect of media size in stirred ball mill grinding of coal,” Powder Technol., 49, 75 – 82 (1986).

    Article  Google Scholar 

  3. J. Zheng, C. C. Harris, P. Somasundaran, “A study on grinding and energy input in stirred media mills,” Powder Technol., 86, 171 – 178 (1996).

    Article  Google Scholar 

  4. M.W. Gao, E. Forssberg, “A study on the effect of parameters in stirred ball milling,” Int. J. Miner. Process., 37, 45 – 59 (1993).

    Article  Google Scholar 

  5. I. Ipek, Y. Ucbas, M. Yekeler, Ç. Hosten, “Dry grinding kinetics of binary mixtures of ceramic raw materials by bond milling,” Ceram. Int., 31, 1065 – 1071 (2005).

    Article  Google Scholar 

  6. A. D. Cuhadaroglu, S. Kizgut, S. Yilmaz, and Y. Zorer, “Characterization of the grinding behavior of binary mixtures of clinker and colemanite,” Particul. Sci. Technol., 31(6), 596 – 602 (2013).

    Article  Google Scholar 

  7. S. Samanli, D. Cuhadaroglu, and S. Kizgut, “A simulation study of laboratory scale ball and vertical stirred mills,” Part. Part. Syst. Char., 26, 256 – 264 (2009).

    Article  Google Scholar 

  8. S. Samanli, D. Cuhadaroglu, Y. Ucbas, and H. Ipek, “Investigation of breakage behavior of coal in a laboratory-scale stirred media mill,” Int. J. Coal Prep. Util., 30(1), 20 – 31 (2010).

    Article  Google Scholar 

  9. S. Samanli, D. Cuhadaroglu, and J. Y. Hwang, “An investigation of particle size variation in stirred mills in terms of breakage kinetics,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(6), 549 – 561 (2011).

    Article  Google Scholar 

  10. I. Ipek, Y. Ucbas, M. Yekeler, Ç. Hosten, “Ternary-mixture grinding of ceramic raw materials,” Miner. Eng., 18(1), 45 – 49 (2005).

    Article  Google Scholar 

  11. L. G. Austin, R. R. Klimpel, and P. T. Luckie, The process engineering of size reduction: Ball milling, 561 New York: SME-AIME (1984).

  12. M. Zhenhua, H. Sian, Z. Shaoming, and P. Xinzhang, “Breakage behavior of quartz in a laboratory stirred ball mill,” Powder Technol., 100, 69 – 73 (1998).

    Article  Google Scholar 

  13. E. Bilgili, J. Yepes, and B. Scarlett, “Formulation of a non-linear framework for population balance modeling of batch grinding: Beyond first-order kinetics,” Chem. Eng. Sci., 61, 33 – 44 (2006).

    Article  Google Scholar 

  14. R. R. Klimpel and L. G. Austin, “Determination of selection for breakage functions in the batch grinding equation by nonlinear optimization,” Ind. Eng. Chem. Fundam., 9, 230 – 237 (1970).

    Article  Google Scholar 

  15. L. G. Austin, K. Shoji, and D. Bell, “Rate equations for non-linear breakage in mills due to material effects,” Powder Technol., 31, 127 – 133 (1982).

    Article  Google Scholar 

  16. L. G. Austin, M. Yekeler, T. F. Dumn, and R. Hogg, “The kinetics and shape factors of ultrafine dry grinding in laboratory ball mill,” Part. Part. Syst. Char., 7, 224 – 247 (1990).

    Article  Google Scholar 

  17. D.W. Fuerstenau, A. De, and P. C. Kapur, “Linear and nonlinear particle breakage process in comminution systems,” Int. J. Miner. Process., 74, 317 – 327 (2004).

    Article  Google Scholar 

  18. V. Deniz, “The effect of mill speed on kinetic breakage parameters of clinker and limestone,” Cement Concreate Res., 34, 1365 – 1371 (2004).

    Article  Google Scholar 

  19. C. C. Pilevneli, S. Kizgut, I. Toroglu, D. Cuhadaroglu, and E. Yigit, “Open and closed circuit dry grinding of cement mill rejects in a pilot scale vertical stirred mill,” Powder Technol., 139, 165 – 174 (2003).

    Article  Google Scholar 

  20. M. A. Tuzun, B. K. Loveday, and A. L. Hinde, “Effect of pin tip velocity, ball density and ball size on grinding kinetics in a stirred ball mill,” Int. J. Miner. Process., 43, 179 – 191 (1995).

    Article  Google Scholar 

  21. A. Jankovic, “Variables affecting the fine grinding of minerals using stirred mills,” Miner. Eng., 16, 337 – 345 (2003).

    Article  Google Scholar 

  22. A. Jankovic and S. Sinclair, “The shape of product size distributions in stirred mills,” Miner. Eng., 19, 1528 – 1536 (2006).

    Article  Google Scholar 

  23. M. Sinnott, P. W. Clearly, and R. Morrison, “Analysis of stirred mill performance using DEM simulation: Part 1-Media motion, energy consumption and collisional environment,” Miner. Eng., 19, 1537 – 1550 (2006).

    Article  Google Scholar 

  24. Z. Ding, Z. Yin, L. Liu, and Q. Chen, “Effect of grinding parameters on the rheology of pyrite-heptane slurry in a laboratory stirred media mill,” Miner. Eng., 20, 701 – 709 (2007).

    Article  Google Scholar 

  25. O. A. Orumwense and E. Forssberg, “Super-fine and ultra-fine grinding — A literature survey,” Miner. Process. Extr. Metall. Rev., 11, 107 – 127 (1992).

    Article  Google Scholar 

  26. L. Blecher and J. Schwedes, “Energy distribution and particle trajectories in a grinding chamber of a stirred ball mill,” Int. J. Miner. Process., 44, 617 – 627 (1996).

    Article  Google Scholar 

  27. B. A.Wills, Mineral processing technology. 3rd Ed., New York: Pergamon Press (1985).

  28. S. Kizgut, D. Cuhadaroglu, and S. Samanli, “Stirred grinding of coal bottom ash to be evaluated as a cement additive,” Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 32(16), 1529 – 1539 (2010).

    Article  Google Scholar 

  29. M. J. Mankosa, G. T. Adel, and R. H. Yoon, “Effect of operating parameters in stirred ball mill grinding of coal,” Powder Technol., 59, 255 – 260 (1989).

    Article  Google Scholar 

  30. H. Fadhel and C. Frances, “Wet batch grinding of alumina in a stirred bead mill,” Powder Technol., 119, 257 – 268 (2001).

    Article  Google Scholar 

  31. Y. Wang and E. Forssberg, “Product size distribution in stirred media mills,” Miner. Eng., 13, 459 – 465 (2000).

    Article  Google Scholar 

  32. R. K. Mehta and C. W. Schultz, “A novel energy efficient process for ultra-fine coal grinding,” Int. J. Coal Prep. Util., 10, 119 – 132 (1992).

    Article  Google Scholar 

  33. H. Cho, M. A. Waters, and R. Hogg, “Investigation of the grind limit in stirred media milling,” Int. J. Miner. Process., 44, 607 – 615 (1996).

    Article  Google Scholar 

  34. H. Karbstein, F. Muler, and R. Polke, “Scale-up for grinding in stirred ball mills,” Aufbereitungs-Technick, 37, 469 – 479 (1996).

    Google Scholar 

  35. A. Kwade, L. Blecher, and J. Schwedes, “Motion and stress intensity of grinding beads in a stirred media mill. Part 2: Stress intensity and its effect on comminution,” Powder Technol., 86, 69 – 76 (1996).

    Article  Google Scholar 

  36. A. Kwade and J. Schwedes, “Breaking characteristics of different materials and their effect on stress intensity and stress number in stirred media mills,” Powder Technol., 122, 109 – 121 (2002).

    Article  Google Scholar 

  37. K. S. Liddell, Machines for fine milling to improve the recovery of gold from calcines and pyrite. Proc. Int. Conf. on Gold (Eds.: C. E. Fivaz, R. P. King), Vol. 2, South African Institute of Mining and Metallurgy, Johannesburg, 405 – 417 (1986).

  38. Anonymous, “Energy Saving Ultra Fine Grinding with the SALAAgitated Mill,” Zement Kalk Gips, 46, 600 – 601 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dilek Cuhadaroglu.

Additional information

Translated from Novye Ogneupory, No. 6, pp. 14 – 23, June 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuhadaroglu, A.D., Kara, E. The Investigation of Grindability of Refractory Wastes in Their Recycling. Refract Ind Ceram 56, 236–244 (2015). https://doi.org/10.1007/s11148-015-9822-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-015-9822-4

Keywords

Navigation