Skip to main content
Log in

Porous structure and gas permeability of carbon-carbon base composite Gravimol in production process high-temperature stages

  • Published:
Refractories and Industrial Ceramics Aims and scope

Abstract

Results are provided for study of the porous structure and gas permeability of carbon-carbon base composite Gravimol for wing cowling of space shuttle Buran in the production process high-temperature stage. The nature of porosity redistribution is shown for the three main groups of material pores in the production process and their role in the final stage, i.e., borosiliciding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. B. Vargaftik, Handbook for Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  2. G. M Butyrin, A. I. Polozhikhin, L. A. Zimina, et al., “Use of isooctane during determination of open porosity of different carbon materials,” in: Coll. Work, Carbon Materials [in Russian], NIIgrafit, Moscow (1991).

  3. G. M. Butyrin, Highly Porous Carbon Materials [in Russian], Khimiya, Moscow (1976).

    Google Scholar 

  4. G. G. Plachenov and S. T. Kolosentsev, Porosimetry [in Russian], Khmiya, Leningrad (1988).

    Google Scholar 

  5. G. M. Butyrin,“Pore structure of specimens prepared from graphite-containing refractory mixtures,” Refr. Ind. Ceram., 45(4), 250–254 (2004).

    Article  CAS  Google Scholar 

  6. G. M. Butyrin, L. A. Zimina, G. A. Lushnikov, et al., Stability of porous graphite structure MPG-6,” Khim. Tverdogo Tela, No. 6, 124–129 (1979).

    Google Scholar 

  7. A. N. Chernyavets, G. M. Butyrin, and I. A. Mironov, “Graphite of large cross sections for laser optics,” Tsvet. Met., No. 4, 107–112 (2000).

    Google Scholar 

  8. L. A. Zimina and G. M. Butyrin, “Study of the porous structure of large electrodes by mercury porosimetry,” Tsvet. Met., No. 8, 54–57 (1978).

    Google Scholar 

  9. J. F. Hewitt, Chemical and Physical Properties of Carbon (F. Walker, editor) [Russian translation], Mir, Moscow (1969).

  10. G. M. Butyrin, “Procedure for determining gas permeability coefficient for carbon materials,” in: MI 4807-12986 [in Russian] NIIgrafit, Moscow (1986).

  11. O. E. Konstatinova, Glossary. Carbon Materials [in Russian], FGUP NNIgrafit, Moscow (2010).

  12. M. I. Rogailin, G. M. Butyrin, and E. F. Chalykh, “Classification of industrial graphite porous structure by specific volume and pore sizes,” Pore Structure and Properties of Materials. Proc. In tern. Symp. Prague, Sept. 18 – 21, 1973. Rep. Part III. Academia, Prague. (1974).

  13. S. A. Kolesnikov, G. M. Butyrin, G. A. Kravetskii, et al., “Porous structure formation and physicomechanical properties of SiC–C carbon-ceramic composite materials. Part 2,” Refr. Ind. Ceram., 50(5), 376–382 (2009).

    Article  CAS  Google Scholar 

  14. A. V. Emyashev, V. I. Kostikov, S. A Kolesnikov, et al., “New combined composite material,” Proc. I Internat Aerospace Conf. “Man – Earth – Space,” 09.29 – 10.01.1992, Vol. 5, Materials and Technology for Production of Aerospace Systems, 172 – 180, Moscow (1995).

  15. I. S. Baicher, Yu. A. Vasanov, V. M. Davydov, et al., Ibid, 172–180.

  16. M. E. Kazakov, “Preparation of carbon-fiber materials based on viscose fiber,” in: Reinforcing Chemical Fibers for Composite Materials (G. I. Kudryavtsev, editor) [in Russian], Khimiya, Moscow (1972).

  17. A. F. Kuteinikov, V. G. Nagornyi, D. K. Khakimova, G. M. Butyrin, et al. “Study of the effect of atomic-molecular porous structure on formation of the main properties of carbon materials,” Nauch. Tekhn. Otchet NIIgrafita, 1, No. 888 (1985).

  18. S. A. Kolesnikov, G. M. Butyrin, and V. I. Kostikov, “Efficiency of compacting pyrolytic carbon with variation of carbon material structure porosity,” Khim. Tverd. Topliva, No. 5, 127–131 (1990).

  19. M. I. Rogailin, I. L. Faberov, N. N. Kovalevskii, and G. M. Butyrin, “Change in the porous structure and permeability of artificial graphie during volumetric compaction with pyrocarbon,” Khim. Tverd. Topliva, No. 4, 132–139 (1971).

  20. V. I. Kostikov, S. A. Kolesnikov, E. I. Kholodilova, et al., “Effect of structure on the properties of fibrous carbon materials,” Mech. Comp. Mater., No. 1, 423–427 (1981).

  21. A. S. Tarabanov and V. I. Kostikov, Silicided Graphite [in Russian], Metallurgiya, Moscow (1977).

    Google Scholar 

  22. S. A. Kolesnikov, E. I. Kholodilova, G. M. Butyrin, e tal., RF Inventor’s Cert 170161, Method for preparing silicided objects, Publ. 03.02.82.

  23. K. K. Strelov, Structure and Properties of Refractories [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  24. V. I. Kostikov, “Features of conversion in special materials sciences,” Konversiya Mashinostroenie, No. 6, 52–57 (1997).

  25. A. N. Shurshakov, L. N. Lutsenko, V. V. Konokotin, et al., “Heat-resistant high-strength materials grade Karbosil,” Konversiya Mashinostroenie, No. 11, 136–140 (1997).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Novye Ogneupory, No. 5, pp. 46 – 52, May, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butyrin, G.M., Konokotin, V.V. Porous structure and gas permeability of carbon-carbon base composite Gravimol in production process high-temperature stages. Refract Ind Ceram 53, 175–180 (2012). https://doi.org/10.1007/s11148-012-9488-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-012-9488-0

Keywords

Navigation