Skip to main content
Log in

Ceramic item deformation during firing: effects of composition and microstructure (review)

  • Published:
Refractories and Industrial Ceramics Aims and scope

The scope is considered for increasing the high-temperature stability to deformation in ceramic items as regards comprehensive improvement in characteristics corresponding to current economic trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Miura, T. Shimadzu, H. Shin, et al., “Evaluation of softening deformation behavior in porcelain bodies during firing,” Ceram. Eng. Sci. Proc., 20, No. 2, 99–111 (1999).

    Article  CAS  Google Scholar 

  2. Zh. V. Kolpashchikova, E. V. Shcherbakova, and N. S. Kostyukov, “Polarization processes in electrotechnical porcelain over a wide frequency range,” Steklo i Keramika, No. 11, 19–21 (2003).

  3. N. K. Mitra, A. Basumajumdar, S. K. Das, Sudip Saha, et al., “Development of zirconia porcelain in presence of active silica and its characterization,” J. Indian Chem. Soc., 81, No. 6, 531–533 (2004).

    CAS  Google Scholar 

  4. S. S. Ordan’yan, O. S. Gerasimova, and N. A. Andreeva, “Aspects of component interaction in a porcelain material containing feldspar liquid,” Ogneupory i Tekhnicheskaya Keramika, No. 2, 2–7 (2004).

  5. S. M. Olhero, G. Tari, and J. M. F. Ferreira, “Feedstock formulations for direct consolidation of porcelains with polysaccharides,” J. Amer. Ceram. Soc., 84, No. 4, 719 (2001).

    Article  CAS  Google Scholar 

  6. N. A. Andreeva and S. S. Ordan’yan, “Scope for improving the physicomechanical properties of electrical porcelain,” in: Proceedings of the 3rd International Conference on Electrical Insulators 2002 [in Russian], Nestor, St. Petersburg (2002), pp. 109–110.

    Google Scholar 

  7. N. A. Andreeva, “Some technological possibilities for improving the properties of porcelain,” in: Proceedings of the 2nd All-Russia Conference on Chemistry and Chemical Engineering at the Start of the Third Millennium [in Russian], TPU, Tomsk (2002), pp. 3–5.

    Google Scholar 

  8. Y. Kobayashi, O Ohira, T. Satoh, et al., “Effect of quartz on the sintering and bending strength of the porcelain bodies in quartz-feldspar-kaolin system,” J. Ceram. Soc. Japan, 102, No. 1181, 99–104 (1994).

    CAS  Google Scholar 

  9. Y. Kobayashi, O. Ohira, and H. Isoyama, “Effect of particle size of raw materials on densification and bending strength of porcelain,” J. Ceram. Soc. Jap., 108, No. 1262, 921–925 (2001).

    Google Scholar 

  10. L. P. Kachalova, Determination of the Optimum Granulometric Composition of Porcelain Bodies: Proc. 9th Conf. Silicate Ind. (SiliConf), Budapest, 1967, Budapest (1968), pp. 355–360.

  11. V. P. Il’ina, “Effects of feldspar raw material grain size on the physicomechanical properties of low-temperature porcelain,” in: Abstracts for the 4th All-Russia Conference on Physicochemical Problems of Creating New Constructional Ceramic Materials: Raw Materials, Synthesis, and Properties [in Russian], Komi Scientific Center, Urals Division of the RAS, Syktyvkar (2001), pp. 183–185.

    Google Scholar 

  12. A. P. Pyzhova, V. V. Korobkina, and V. S. Kosov, Defects in Fine-Grained Ceramic Items: Causes and Methods of Elimination [in Russian], Legprombytizdat, Moscow (1993).

    Google Scholar 

  13. P. P. Budnikov, A. A. Varuzhanyan, M. P. Volarovich, et al., “A study of the effects of a water vapor medium on the viscosity changes in clays on heating,” Zh. Prikl. Khim., No. 39, 2111–2114 (1966).

    Google Scholar 

  14. E. I. Evtushenko, I. Yu. Moreva, V. I. Bedina, et al., “Porcelain-faience items based on two-component bonding agents,” in: Proceedings of the 2nd Conference on Scientists, Instructors, Leading Experts, and Young Researchers on Ceramics and Refractories: Promising Decisions and Nanotechnology [in Russian], BGTU, Belgorod (2009), pp. 246–249.

    Google Scholar 

  15. V. A. Lotov, “Monitoring structure formation in the technology of ceramic and silicate materials,” Steklo i Keramika, No. 5, 21–25 (1999).

  16. P. Boch, J. Boisson, and D. Vandermarcq, “Development of bodies and techniques enabling a decrease of the deformations occurring in porcelain bodies during shaping and firing,” Bull. Soc. Fr. Ceram., No. 121, 3–16 (1978).

    Google Scholar 

  17. A. I. Zakharov, “Ceramic homogeneity: Connection with the method of forming and geometrical characteristics,” Steklo i Keramika, No. 9, 35–38 (2003).

  18. A. I. Zakharov and I. A. Karnaushchenko, “Capillary impregnation in research on the homogeneity of the surfaces of ceramic semifinished products and items,” Steklo i Keramika, No. 10, 37–40 (2008).

  19. I. Štubòa, A. Lintnerová, and L. Vozár, “Anisotropic mechanical properties of textured quartz porcelain,” Ceramics-Silikaty, 52, No. 2, 90–94 (2008).

    Google Scholar 

  20. P. P. Budnikov and Kh. O. Gevorkyan, Firing Porcelain [in Russian], Stroiizdat, Moscow (1972).

    Google Scholar 

  21. J. J. Restrepo and D. R. Dinger, “Monitoring of pyroplastic deformation of triaxial porcelain bodies using dilatometric analysis,” Ceram. Ind. (Saõ Paulo, Brazil), 8, No. 4, 37–48 (2003).

    CAS  Google Scholar 

  22. S. Kr. Das and K. Dana, “Differences in densification behaviour of K- and Na-feldspar-containing porcelain bodies,” Thermochim. Acta, No. 406, 199–206 (2003).

  23. S. R. Braganca and C. P. Bergmann, “A view of whitewares mechanical strength and microstructure,” Ceram. Int., 29, No. 7, 801–806 (2003).

    Article  CAS  Google Scholar 

  24. I. A. Levitskii and Yu. A. Klimosh, “Structure formation in a sintering ceramic for domestic purposes,” Steklo i Keramika, No. 6, 32–36 (2005).

  25. G. P. Sedmale, I. E. Shperberga, and U. Ya. Sedmalis, “Formation of mullite from compositions of hydromica clay with aluminum oxide,” Steklo i Keramika, No. 2, 16–18 (2004).

  26. G. P. Sedmale, I. E. Shperberga, and U. Ya. Sedmalis, “A high-temperature ceramic based on modified illite clays,” Ogneupory i Tekhnicheskaya Keramika, No. 4, 9–12 (2004).

  27. K. Dana and S. Kumar Das, “Evolution of microstructure in flyash-containing porcelain body on heating at different temperatures,” Bull. Mater. Sci., 27, No. 2, 183–188 (2004).

    Article  CAS  Google Scholar 

  28. Y. Kobayashi, O. Ohira, and H. Isoyama, Nippon seramikkusu Kyokai Gakujutsu Ronbunshi (J. Ceram. Soc. Jap.) 111, No. 1290, 122–125 (2003).

    CAS  Google Scholar 

  29. W.-P. Tai, K. Kimura, H. Tateyama, et al., “Fabrication of new porcelain bodies in the system of glass microspheres-quartzaluminous cement,” J. Ceram. Soc. Jap., 107, No. 1241, 8–14 (1999).

    CAS  Google Scholar 

  30. J. Liebermann andW. Shulle, “Bauxite porcelain: Anew refractory material for producing high-voltage insulators,” [in Polish] Szklo i Ceram., 54, No. 4, 25–29 (2003).

    CAS  Google Scholar 

  31. F. Porte, R. Brydson, B. Rand, et al., “Creep viscosity of vitreous china,” J. Am. Ceram. Soc., 87, No. 5, 923–928 (2004).

    Article  CAS  Google Scholar 

  32. S. Lyng, “Über die Glasphase in Porzellan,” Ber. Dtsch. Keram. Ges., 46, No. 5, 260–261 (1969).

    CAS  Google Scholar 

  33. F. Srbek and I. Galkina, “Plastic deformation of porcelain materials with high content of alumina at high temperatures,” Silikaty (Prague), 18, No. 2, 155–172 (1974).

    CAS  Google Scholar 

  34. A. Awgustinik and I. T. Sinznowa, “Making high-strength porcelain,” Silikattechnik, 19, No. 4, 111–114 (1968).

    Google Scholar 

  35. V. B. Kulish, “Effect of a temperature field on the deformation of flat china pieces,” Steklo i Keramika, No. 11, 21–22 (1980).

  36. O. N. Kanygina, A. G. Chetverikova, A. A. Skripnikov, et al., “Effects of heating rate on the physicomechanical properties of silica ceramic,” Steklo i Keramika, No. 6, 17–19 (1999).

  37. E. Blond, N. Schmitt, F. Hild, et al., “Microstructural variation in porcelain stoneware as function of flux system,” J. Amer. Ceram. Soc., 87, No. 10, 1959–1966 (2004).

    Google Scholar 

  38. Y. Kobayashi and E. Kato, “Low-temperature sintering of porcelain in CaO–Al2O3–SiO2 system,” J. Ceram. Soc. Jap., 108, No. 1255, 271–276 (2000).

    CAS  Google Scholar 

  39. C. Zografou, “Die Gefugeausbildung von Hartporzellan bei der Anwendung von Mineralisatoren,” Tonind. Ztg., 92, No. 1–2, 478–479 (1968).

    Google Scholar 

  40. G. N. Maslennikova and T. V. Stoikova, “Domestic-use porcelain with added mineralizers,” Steklo i Keramika, No. 7, 20–21 (2001).

  41. A. V. Abdrakhimov, “Effects of iron-bearing man-made raw material on the viscosity of ceramic materials,” Ogneupory i Tekhnicheskaya Keramika, No. 2, 48–50 (2006).

  42. E. S. Abdrakhimova, “Phase transformations on firing clay materials with various chemical and mineral compositions,” Ogneupory i Tekhnicheskaya Keramika, No. 2, 21–29 (2006).

  43. T. Wiedmann, “Hochilestporzellane. Teil IV,” Sprechsaal Keram., Glas, Emaill, Silik, 101, No. 11, 439–440, 442, 446; No. 14, 591–596; No. 15, 631–635; No. 17, 767–772; No. 18, 774, 776 (1968).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Novye Ogneupory, No. 8, pp. 45–52, August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, D.V., Zakharov, A.I. Ceramic item deformation during firing: effects of composition and microstructure (review). Refract Ind Ceram 50, 298–303 (2009). https://doi.org/10.1007/s11148-009-9191-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-009-9191-y

Keywords

Navigation