Skip to main content
Log in

Numerical method for simulating sintering

  • Scientific Research and Development
  • Published:
Refractories and Industrial Ceramics Aims and scope

A numerical method is proposed in order to simulate sintering, based on fundamental equations of diffusion theory (Fick equation). The method makes it possible to consider actual geometry of particles from which a powder compact is composed, and it may be used for an assembly of particles of another shape, dimensions and reciprocal position. A boundary element method is used for numerical realization. Results are presented for simulating sintering of Al2O3 particles of different shape and sizes. Dependences are presented for the effect of different material characteristics, in particular dihedral angle (it specifies the relationship of free surface energy and intergranular boundary energy), on sintering kinetics and the value of intergranular boundary achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ya. E. Geguzin, Physics of Sintering [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  2. V. V. Skorokhod, Rheological Bases of Sintering Theory [in Russian], Naukova Dumka, Kiev (1972).

    Google Scholar 

  3. Ya. I. Frenkel’, “Viscous flow of crystalline bodies under the action of surface tension,” Fiz. Zh., 9, 385–391 (1945).

  4. G. C. Kuczinski, “Self-diffusion in sintering of metallic particles,” Trans. Amer. Inst. Min. Met. Eng., 185, 169–178 (1949).

    Google Scholar 

  5. M. F. Ashby, “ Afirst report on sintering diagrams,” Acta Metall., 22, 278–289 (1974).

    Google Scholar 

  6. F. B. Swinkels and M. F. Ashby, “A second report on sintering diagrams,” Acta Metall., 29, 259–281 (1981).

    Article  CAS  Google Scholar 

  7. A. V. Galakhov and E. V. Tsibailo, “Inhomogeneity of powder packing in compacts and the strength of ceramics prepared from them,” Ogneupory. Tekhn. Keram., No. 5, 14–19 (1997).

  8. J. Ma and L. C. Lim, “Effect of particle size distribution on sintering of agglomerate-free submicron alumina powder compacts,” J. Eur. Ceram. Soc., 22, 2197–2208 (2008).

    Article  Google Scholar 

  9. E. A. Nichols, “The sintering of wires by surface diffusion,” Acta Metall., 16, 103–113 (1968).

    Article  CAS  Google Scholar 

  10. J.W. Ross,W. A. Miller, and G. C.Weatherley, “Dynamic computer simulation of viscous flow sintering,” J. Appl. Phys., 52, 3644–3668 (1981).

    Google Scholar 

  11. A. Jagota and P. W. Dawson, “Micromechanical modelling of powder compacts. II. Truss formulation of discrete packing,” Acta Metall., 36, 2563–2873 (1988).

    Article  CAS  Google Scholar 

  12. M. P. Anderson, D. J. Srolovitz, G. S. Grest, et al., “Computer simulation of grain growth,” Acta Metall., 32, 783–791 (1984).

    Article  CAS  Google Scholar 

  13. G. N. Hassold, I. Chen, and D. J. Srolovitz, “Computer simulation of fine-state sintering. I. Model, kinetics and microstructure,” J. Amer. Ceram. Soc., 73, 2857–2864 (1990).

    Article  CAS  Google Scholar 

  14. H. Matsabura, “Computer simulation studies of sintering and grain growth,” J. Ceram. Soc. Jap., 115, 263–268 (2005).

    Article  Google Scholar 

  15. N. Brebbiya and S. Warner, Application of the Boundary Element Method [Russian translation], Mir, Moscow 91982).

    Google Scholar 

  16. J. M. Dynys, R. V. Coble and W. S. Coblenz, “Mechanisms of atom transport during initial stage sintering of Al2O3,” Mat. Sci. Res., 13, 391–404 (1979).

    Google Scholar 

  17. P. Nicolopoulus, “Surface, grain boundary and interfacial energies in Al2O3 and Al2O3–Sn, Al2O3-Co systems,” J. Mater. Sci., 20, 3993–4000 (1985).

    Article  ADS  Google Scholar 

  18. C. A. Hnadwerker, J. N. Dynys, R. M. Cannon, et al., “Dihedral angles in magnesia and alumina,” J. Amer. Ceram. Soc., 73, 1371–1377 (1990).

    Article  Google Scholar 

  19. K. E. Easterling, “Electron microscopy study of stresses of contacts between sintered aluminum particles,” Int. J. Powd. Met., 7, 29–37 (1971).

    Google Scholar 

  20. R. L. Coble, “Effects of particle size distribution in initial stage sintering,” J. Amer. Ceram. Soc., 56, 461–466 (1973).

    Article  CAS  Google Scholar 

  21. B. J. Kellett and F. F. Lange, “Thermodynamics of densification: I. Sintering of simple particle arrays, equilibrium configurations, pore stability and shrinkage,” J. Amer. Ceram. Soc., 72, 725–734 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Novye Ogneupory, No. 5 pp. 30–37, May 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galakhov, A.V. Numerical method for simulating sintering. Refract Ind Ceram 50, 191–197 (2009). https://doi.org/10.1007/s11148-009-9170-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-009-9170-3

Keywords

Navigation