Skip to main content

Advertisement

Log in

Ceramic films: Hydrodynamic and topochemical memory effects

  • Published:
Refractories and Industrial Ceramics Aims and scope

Abstract

The effect of self-organization is identified in the production of ceramic films on different bases using the solution technology. The reasons for the emergence of this effect are discussed and a thermocapillary mechanism for the origin of dissipative structures is proposed. Topochemical processes occurring in thermolysis of abietates are considered. The prospects of the synergetic approach to solving topical problems of film materials are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Klyuev, V. N. Semenov, and A. I. Kustov, “Photoactivity of thin-film solid solutions CdxZn1−x S,” Poverkhnost’. Rentgenovskie, Sinkhronnye Neitronnye Issledovania, No. 4, 101–103 (2001).

  2. T. L. Hill, “Thermodynamics of small systems,” J. Chem. Phys., 36(12), 3182–3197 (1962).

    Article  CAS  Google Scholar 

  3. I. Lshamsheeva and V. N. Semenov, “Thermodynamic analysis of precipitation of metal sulfide films,” in: Physicochemical Principles of Electron Study O Materials. Proc. V All-Union School [in Russian], Novosibirsk (1988).

  4. Yu. D. Chistyakov and Yu. P. Rainova, Physicochemical Principles of Microelectronic Technology [in Russian], Metalluyrgia, Moscow (1979).

    Google Scholar 

  5. G. V. Lisichkin, V. A. Tertykh, and P. N. Nesterenko, “Mineral carriers with grafted surface compounds: aspects of practical application,” Zhurnal Vses. Khim. Obshchestva im. D. I. Mendeleeva, 36(6), 697–705 (1991).

    Google Scholar 

  6. Ya. A. Ugai, E. M. Averbakh, and V. N. Semenov, “Production of heterotransitions based on metal sulfides using pulverization,” Elektronnaya Tekhnika. Series: Materials, Issue 9, 68–71 (1980).

  7. V. N. Semenov, O. V. Ostapenko, and M. N. Levin, “Heterostructures CdxZn1−x S-Cu2S for ground-based photoelectric transducers made from thiocarbamide complexes,” Condensirivannye Sredy Mezhfaznye Granitsy, 4(1), 55–58 (2002).

    Google Scholar 

  8. Yu. A. Tomashpolskii and G. L. Platov, Ferroelectric Films of Complex Metal Oxides [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  9. J. F. Scott, deAraujo Paz, and L. D. McMillan, “Integrated Ferroelectrics,” Condensed Matter News, 1(3), 16–20 (1992).

    Google Scholar 

  10. S. L. Swartz and V. E. Wood, “Ferroelectric Thin Films,” Ibid., 1(5), 4–13 (1992).

    CAS  Google Scholar 

  11. Yu. V. Meteleva, V. N. Semenov, V. G. Klyuev, et al., “Luminescent properties of CdxZn1−x S films obtained from complex compounds of thiocarbamide,” Neorganich. Materialy, 37(12), 1435–1438 (2001).

    Google Scholar 

  12. A. P. Alekhin, Physicochemical Principles of Submicron Technology [in Russian], Izd. MIFI, Moscow (1966).

    Google Scholar 

  13. V. N. Semenov, “Processes of formation of thin layers of semiconductor sulfides from thiocarbamide coordination compounds”. Author’s Abstract of Doctoral Thesis, Voronezh (2002).

  14. N. I. Ponomareva, “Formation of functional layers based on semiconductors by vapor-phase chemical precipitation from organoelemental compounds”. Author’s Abstract of Doctoral Thesis, Voronezh (2004).

  15. V. I. Kukuev, I. Ya. Mittova, and E. P. Domashevskaya, Physical Methods for Studying Thin Films and Surface Layers [in Russian], Izd. VGU, Voronezh (2001).

    Google Scholar 

  16. A. I. Golovashkin, “Methods for producing films and coatings from high-temperature superconductors,” Zhurnal Vses. Khim. Obshchestva im. D. I. Mendeleeva, 34(4), 481–492 (1989).

    CAS  Google Scholar 

  17. A. R. Kaul’, “Chemical methods for producing films and coatings from high-temperature superconductors,” Zhurnal Vses. Khim. Obshchestva im. D. I. Mendeleeva, 34(4), 492–503 (1989).

    CAS  Google Scholar 

  18. G. A. Razuvaev, B. G. Gribov, and G. A. Domrachev, Metalloorganic Compounds in Electronics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  19. D. C. Bradley, “New metallo-organic precursors for surface processing: Symp. EE-MRS Spring Cînf. Surface Process. and Laser Assisted Chem., Strabourg, 29 May–1 June, 1990,” Appl. Surface Sci., Vol. 46, 1–4 (1990).

    Article  CAS  Google Scholar 

  20. O. N. Mittov, N. I. Ponomareva, and I. Ya. Mittova, “Precipitation of aluminum and silicon oxide films in pyrolysis of aluminum trisacetylacetonate and hexamethyl siloxane in the presence of aluminum and hexamethyl siloxane in the presence of nitrogen-bearing compounds,” Neorganich. Materialy, 36(12), 1476–1484 (2000).

    Google Scholar 

  21. L. L. Trubnikov, “Ferroelectric bismuth titanate ceramics Bi4Ti3O12: from solid materials to thin films,” Ogneupory Tekhnich. Keramika, No. 11, 8–15 (2004).

  22. L. L. Trubnikov, T. G. Lupeiko, and A. A. Zubkov, “Production of ZTS films in self-regulated pyrolytic formation. Order, disorder, properties of oxides (ODPO-2004),” in: Proc. 7 th Intern. Symposium [in Russian], Sochi (2004).

  23. A. Carpy and N. Marchand-Geneste, “Molecular characterization of retene derivatives obtained by thermal treatment of abietane skeleton diterpenoids,” J. Molecular Structure, Vol. 635, 45–53 (2003).

    Article  CAS  Google Scholar 

  24. N. Marchand-Geneste and A. Carpy, “Theoretical study of the thermal degradation pathways of abietane skeleton diterpenoids: aromatization to retene,” Ibid., 55–82.

  25. E. I. Orlov, Glazes, Enamels, Ceramic Paints and Mixtures [in Russian], Moscow-Leningrad (1937).

  26. M. A. Dododhznov, V. P. Komarov, and I. S. Shaplygin, “Thermal decomposition of dysprosium, holmium, and ytterbium abietates,” Zhurnal Neorganich. Khimii, 31(3), 640–642 (1986).

    Google Scholar 

  27. M. A. Dododzhanov, V. P. Komarov, V. B. Lazarev, et al., “Synthesis and thermal decomposition of chromium and copper abietates,” Ibid., 31(5), 1342–1344 (1986).

    Google Scholar 

  28. V. A. Vazir and M. A. Martynov, Ceramic Paints [in Rissian], Tekhnika, Kiev (1964).

    Google Scholar 

  29. L. F. Akunova and S. Z. Pribluda, Science of Materials and Production Technology of Artistic Ceramics [in Russian], Vysshaya Skola, Moscow (1979).

    Google Scholar 

  30. L. D. Landau and E. M. Lifshits, Hydrodynamics [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  31. Yu. S. Kachanov, V. V. Kozlov, and V. Ya. Levchenko, Emergence of Turbulence in a Boundary Layer [in Russian], Novosibirsk, Nauka (1982).

    Google Scholar 

  32. A. V. Getling, “Formation of Spatial Structures in Rayleigh — Benard Convection,” Uspekhi Fiz. Nauk, 161(9), 1 (1991).

    Google Scholar 

  33. D. Joseph, Stability of Fluid Motion [in Russian], Mir, Moscow (1981).

    Google Scholar 

  34. G. Schlihting, Emergence of Turbulence [in Russian], IL, Moscow (1962).

    Google Scholar 

  35. G. Z. Gershuni and E. M. Zhukhovitskii, Convective Stability of Incompressible Liquid [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  36. G. S. Gershuni, E. M. Zukhovitskii, and A. A. Nepomniyshchii, Stability of Convective Flows [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  37. P. Benedek and A. Lazlo, Scientific Principles of Chemical Engineering [in Russian], Khiniya, Leningrad (1970).

    Google Scholar 

  38. V. G. Ainshtein, A General Course in Chemical Engineering Processes and Equipment [in Russian], Book 1, Universitetskaya Kninga, Logos, Fizmatkniga, Moscow (2006).

    Google Scholar 

  39. I. Prigogine and R. Defay, Chemische Thermodynamik, VEB Deutscher Verlag für GrundstoffindustrieLeipzig (1962).

  40. I. P. Prigogine and I. Stengers, The Order from the Chaos [in Russian], Progress, Moscow (1986).

    Google Scholar 

  41. G. Nikolis and I. P. Prigogine, Self-Organization in Nonequilibrium Systems [in Russian], Mir, Moscow (1979).

    Google Scholar 

  42. P. Glensdorf and I. P. Prigogine, Thermodynamic Theory of Stability and Fluctuation Structure [in Russian], Mir, Moscow (1973).

    Google Scholar 

  43. V. I. Bykov, N. A. Lar’kin, and G. S. Yablonskii, “The use of thermodynamic Glensdorf-Prigogine criterion for stability of the stationary state of complex chemical reactions,” Zhurnal Fiozich. Khimii, 52(1), 68–70 (1978).

    CAS  Google Scholar 

  44. E. M. Kol’tsova, Yu. D. Tret’yakov, L. S. Gordeev, et al., Nonlinear Dynamics and Thermodynamics of Irreversible Processes in Chemistry and Chemical Engineering [in Russian], Khimiya, Moscow (2001).

    Google Scholar 

  45. V. V. Kafarov, I. N. Dorokhov, and E. M. Kol’tsova, System Analysis of Chemical Technology. Entropy and Variation Methods of Nonequilibrium Thermodynamics in Chemical Engineering Problems [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  46. I. V. Radchenko, Molecular Physics [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  47. L. L. Trubnikov, “Chemical resistance of overglaze films,” Ogneupory Tekhnich. Keran., No. 7, 32–34 (2000).

  48. A. Ya. Rozovskii, Kinetics of Topochemical Reactions [in Russian], Khimiya, Moscow (1974).

    Google Scholar 

  49. V. K. Semenchenko, “Thermodynamics of mesophases and properties of polymers and liquid crystals,” in: Application of Ultraacoustics to Study of Materials [in Russian], Issue 16. Moscow (1962).

  50. E. D. Eidelman, “Specifics of thermoelectric convection in liquid crystals,” Fizika Tverdogo Tela, 37(1), 160–174 (1995).

    Google Scholar 

  51. E. D. Eidelman, “Excitation of electric instability by heating,” Uspekhi Fiz. Nauk, 165(11), 1279–1295 (1995).

    Article  CAS  Google Scholar 

  52. G. A. Ostroumov, Interaction Between Electric and Hydrodynamic Fields [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  53. G. Hacken, Synergetics [in Russian], Mir, Moscow (1979).

    Google Scholar 

  54. G. Hacken, Synergetics. Instability Hierarchy in Self-Organizing Systems and Devices [in Russian], Mir, Moscow (1985).

    Google Scholar 

  55. I. L. Trubnikov and E. A. Kandyusheva, “A synergetic analysis of the efficiency of grinding processes,” Refractories and Industrial Ceramics, 46(4), 239–245 (2005).

    Article  Google Scholar 

  56. V. I. Shapovalov, “Formation of system properties and statistic approach,” Avtomatika Telemehhanika, No. 6, 57–68 (2001).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Novye Ogneupory, No. 7, pp. 47–58, July, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trubnikov, I.L., Zubkov, A.A. Ceramic films: Hydrodynamic and topochemical memory effects. Refract Ind Ceram 48, 208–218 (2007). https://doi.org/10.1007/s11148-007-0061-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-007-0061-1

Keywords

Navigation