Skip to main content
Log in

Thermal stability of high-temperature materials. Part 1

  • Published:
Refractories and Industrial Ceramics Aims and scope

Abstract

Theories of thermal stability for high-temperature materials based on the application of static thermoelasticity equations to nonstationary thermal processes are reviewed. A new criterion for thermal stability, R = ΔTd, is proposed. Anew model, based on the maximum stress theory and the quantum theory of thermal field, is proposed; in terms of this model, the stress-strain state of a solid subjected to thermal shock can be determined by solving equations of thermal strength and heat conduction with allowance made for inertial terms in thermal stability equations. Thermostability is considered as a physical parameter characterizing the resistance of materials to failure in a nonstationary temperature field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. D. Kingery, Introduction to Ceramics, Wiley-Interscience, New York (1976).

    Google Scholar 

  2. A. I. Natsenko, Thermal Stability of Brittle Materials. Theoretical and Technological Studies of Refractory Materials [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  3. V. Dauknis, K. Kazakiavicius, G. Prantskavicius, et al. (eds.), Thermal Stability of Refractory Ceramics [in Russian], Mintis, Vilnius (1971).

    Google Scholar 

  4. V. V. Kolomeitsev and E. F. Kolomeitseva, “A thermal shock theory in the acoustic stress wave range,”Ogneup. Tekhn. Keram., No. 2, 62–68 (1999).

    Google Scholar 

  5. S. A. Suvorov, “A report on the problem of systems analysis of refractories,”Ogneupory, No.5, 8–10 (1993).

    Google Scholar 

  6. I. Stinnesen, A. Buhr, T. de Vitt et al., “Fiberless lining of a pre-heating unit for steel ladles at a metallurgical plant (Corus Co., Eimeiden),”Novye Ogneupory, No. 7, 28–33 (2003).

    Google Scholar 

  7. V. V. Kolomeitsev, E. F. Kolomeitseva, and S. A. Suvorov, “Submersible pouring nozzles for continuous casting machines. State of the art and prospects,”Ogneup. Tekhn. Keram., No. 6, 49–57 (2001).

    Google Scholar 

  8. F. R. Shklyar, E. L. Surgucheva, and Ya. P. Kalugin, “Structural thermal stability of the refractory lining,”Ogneupory, No. 5, 9–13 (1988).

    Google Scholar 

  9. V. P. Maiboroda, A. S. Kravchuk, and N. N. Kholin, High-Speed Deformation of Structural Materials[in Russian], Mashinostroenie, Moscow (1986).

    Google Scholar 

  10. V. I. Danilovskaya, “Temperature stresses in an elastic half-space produced by a sudden heating at its boundary,”Prikl. Mekh. Mat., 14(3), 316–318(1950).

    Google Scholar 

  11. T. A. Zeiker, “An analysis of stress waves produced by thermal shock in a layer of finite thickness,”Trudy Am. Obshch. Inzh.-Mekh. [Russian translation], 32(1), 163–172 (1965).

    Google Scholar 

  12. V. V. Kolomeitsev, S. A. Suvorov, and V. N. Makarov, “Synthesis, sintering, and properties of aluminum titanate,”Ogneupory, No.8, 5–9 (1981).

    Google Scholar 

  13. E. L. Polisar, D. V. Kochetov, Yu. V. Abrosimov et al., “Thermal stability and physicomechanical properties of graphite,”Ogneupory, No. 5, 9–13 (1988).

    Google Scholar 

  14. H. Leibowitz (ed.), Fracture. Vol. 7. Fracture of Nonmetals and Composites, Acad. Press, New York (1972).

    Google Scholar 

  15. V. V. Kolomeitsev and K. N. Dergunov, “Thermal stability of refractory and ceramic materials subjected to a thermal shock,” Ogneupory, No. 5, 13–15(1988).

    Google Scholar 

  16. Timoshenko S. P. and J. N. Goodier, Theory of Elasticity, McGraw-Hill Co., New York (1969).

    Google Scholar 

  17. V. V. Kolomeitsev and K. N. Dergunov, “Thermal diffusivity of refractory and ceramic materials,”Ogneupory, No. 6, 46–47 (1989).

    Google Scholar 

  18. A. F. Koryshev and G. A. Frolova, Movement of Isotherms in a Continuous Solid Body Exposed to Different Temperature Effects. Use of the Solar and Other Sources of Radiant Energy in Materials Science [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  19. V. N. Yurenev and P. D. Lebedev (eds.), Heat Engineering Handbook. Vol. 2 [in Russian], Énergiya, Moscow (1976).

    Google Scholar 

  20. A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).

    Google Scholar 

  21. V. V. Kolomeitsev, E. F. Kolomeitseva, and S. A. Suvorov, “A phenomenological theory of thermal diffusivity,”Ogneup. Tekhn. Keram., No. 4, 35–36 (2001).

    Google Scholar 

  22. Ch. Kittel, Introduction to Solid State Physics, Wiley, New York (1976).

    Google Scholar 

  23. V. V. Kolomeitsev, E. F. Kolomeitseva, and O. V. Kolomeitseva, “A theoretical evaluation of the actual strength of single-phase refractory and ceramic materials,”Ogneup. Tekhn. Keram., No.5, 2–5 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Novye Ogneupory, No. 6, June, 2004, pp. 28–34.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolomeitsev, V.V., Suvorov, S.A. & Kolomeitseva, E.F. Thermal stability of high-temperature materials. Part 1. Refract Ind Ceram 45, 327–332 (2004). https://doi.org/10.1007/s11148-005-0007-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-005-0007-4

Keywords

Navigation