Appendix
Proof of Lemma 1
If one denotes by \( \tilde{p}\left( {\tilde{x}} \right) \) the standardized density, one has that \( p\left( x \right) = \frac{1}{\sigma }\tilde{p}\left( {\frac{x - \mu }{\sigma }} \right) \). Using a well-known property of the “physicists” Hermite polynomials, namely
$$ e^{{ - \frac{{x^{2} }}{2}}} \cdot H_{n} \left( x \right) = \left( {x - \frac{d}{dx}} \right)^{n} e^{{ - \frac{{x^{2} }}{2}}} , $$
the Gauss–Hermite expansion of \( \tilde{p}\left( {\tilde{x}} \right) \) can be written as
$$ \tilde{p}\left( {\tilde{x}} \right) = z\left( {\tilde{x}} \right)\sum\limits_{n = 0}^{\infty } {a_{n} H_{n} \left( {\tilde{x}} \right)} = \sum\limits_{n = 0}^{\infty } {a_{n} \left( {\tilde{x} - \frac{d}{{d\tilde{x}}}} \right)^{n} } z\left( {\tilde{x}} \right). $$
Therefore, the Fourier transform of \( \tilde{p} \) is
$$ \sum\limits_{n = 0}^{\infty } {a_{n} i^{n} \left( {\phi - \frac{d}{d\phi }} \right)^{n} \exp \left( { - \frac{1}{2}\phi^{2} } \right) = } \exp \left( { - \frac{1}{2}\phi^{2} } \right)\sum\limits_{n = 0}^{\infty } {a_{n} i^{n} H_{n} \left( \phi \right)} . $$
The Fourier transform of p follows immediately. □
Proof of Proposition 1
If one denotes by pt+τ(St+τ) the terminal underlying asset price risk-neutral density and by p(x) the standardized log-return risk-neutral density then we have that:
$$ \begin{aligned} c\left( {S_{t} ,K,r,q,\mu ,\sigma ,\tau } \right) & = e^{ - r\tau } \int\limits_{ - \infty }^{\infty } {\hbox{max} \left( {S_{t + \tau } - K,0} \right)p_{t + \tau } \left( {S_{t + \tau } } \right)dS_{t + \tau } } \\ & = e^{ - r\tau } \int\limits_{ - \infty }^{\infty } {\hbox{max} \left( {S_{t} e^{\mu \tau + \sigma \sqrt \tau x} - K,0} \right)p\left( x \right)dx} \\ & = e^{ - r\tau } \int\limits_{{ - d_{2} }}^{\infty } {\left( {S_{t} e^{\mu \tau + \sigma \sqrt \tau x} - K} \right)p\left( x \right)dx} = S_{t} e^{ - q\tau }\Pi _{1} - Ke^{ - r\tau }\Pi _{2} \\ \end{aligned} $$
with
$$ \Pi _{1} = e^{(\mu - r + q)\tau } \int_{{ - d_{2} }}^{\infty } {e^{\sigma \sqrt \tau x} p\left( x \right)dx} $$
and \( \Pi _{2} = \int_{{ - d_{2} }}^{\infty } {p\left( x \right)dx} . \) Taking into account the Gauss–Hermite expansion of the log-return risk-neutral density, one has that
$$ \Pi _{1} = \exp \left\{ {\left( {\mu - (r - q) + \frac{{\sigma^{2} }}{2}} \right)\tau } \right\}\sum\limits_{n = 0}^{\infty } {a_{n} I_{n} } $$
with
$$ \begin{aligned} I_{n} & = e^{{ - \frac{{\sigma^{2} \tau }}{2}}} \cdot \mathop \int\nolimits_{{ - d_{2} }}^{\infty } e^{\sigma \sqrt \tau x} z\left( x \right)H_{n} \left( x \right)dx \\ & = e^{{ - \frac{{\sigma^{2} \tau }}{2}}} \cdot \mathop \int\nolimits_{{ - d_{2} - \sigma \sqrt \tau }}^{\infty } e^{{\sigma \sqrt \tau \left( {x + \sigma \sqrt \tau } \right)}} z\left( {x + \sigma \sqrt \tau } \right)H_{n} \left( {x + \sigma \sqrt \tau } \right)dx \\ & = \mathop \int\nolimits \limits_{{ - d_{1} }}^{\infty } H_{n} \left( {x + \sigma \sqrt \tau } \right)z\left( x \right)dx \\ \end{aligned} $$
and Π2 = ∑
∞
n=0
anJn with \( J_{n} = \int_{{ - d_{2} }}^{\infty } {H_{n} \left( x \right)z\left( x \right)dx} \). Using the properties of Gauss–Hermite polynomials namely \( H_{n + 1} \left( x \right) = 2x H_{n} \left( x \right) - 2n H_{n - 1} \left( x \right) \), \( H_{n}^{'} \left( x \right) = 2n H_{n - 1} (x) \) and integration by parts, one can obtain the recursion equations for In and Jn as follows:
$$ \begin{aligned} I_{n + 1} & = \int\limits_{{ - d_{1} }}^{\infty } {H_{n + 1} \left( {x + \sigma \sqrt \tau } \right)z\left( x \right)dx} \\ & = \int\limits_{{ - d_{1} }}^{\infty } {\left[ {2\left( {x + \sigma \sqrt \tau } \right)H_{n} \left( {x + \sigma \sqrt \tau } \right) - H^{\prime}_{n} \left( {x + \sigma \sqrt \tau } \right)} \right]z\left( x \right)dx} \\ & = - 2\int\limits_{{ - d_{1} }}^{\infty } {H_{n} \left( {x + \sigma \sqrt \tau } \right)z^{\prime}\left( x \right)dx} + 2\sigma \sqrt \tau \int\limits_{{ - d_{1} }}^{\infty } {H_{n} \left( {x + \sigma \sqrt \tau } \right)z\left( x \right)dx} \\ & \quad - \,\int\limits_{{ - d_{1} }}^{\infty } {H^{\prime}_{n} \left( {x + \sigma \sqrt \tau } \right)z\left( x \right)dx} \\ & = 2H_{n} \left( { - d_{1} + \sigma \sqrt \tau } \right)z\left( { - d_{1} } \right) + 2\sigma \sqrt \tau I_{n} + 2nI_{n - 1} \\ \end{aligned} $$
where we have used \( z^{\prime}\left( x \right) = - x z\left( x \right) \).
$$ \begin{aligned} J_{n + 1} & = \int\limits_{{ - d_{2} }}^{\infty } {H_{n + 1} \left( x \right)z\left( x \right)dx} = \int\limits_{{ - d_{2} }}^{\infty } {\left[ {2xH_{n} \left( x \right) - H_{n}^{\prime } \left( x \right)} \right]z\left( x \right)dx} \\ & = 2H_{n} \left( { - d_{2} } \right)z\left( { - d_{2} } \right) + \int\limits_{{ - d_{2} }}^{\infty } {H_{n}^{\prime } \left( x \right)z\left( x \right)dx} \\ & = 2H_{n} \left( { - d_{2} } \right)z\left( { - d_{2} } \right) + 2n\int\limits_{{ - d_{2} }}^{\infty } {H_{n - 1}^{{}} \left( x \right)z\left( x \right)dx} \\ & = 2H_{n} \left( { - \,d_{2} } \right)z\left( { - \,d_{2} } \right)\, + \,2nJ_{n - 1} . \\ \end{aligned} $$
Finally, we have \( I_{0} = \int_{{ - d_{1} }}^{\infty } z \left( x \right)dx = N\left( {d_{1} } \right) \) and similarly \( J_{0} = \int_{{ - d_{2} }}^{\infty } z \left( x \right)dx = N\left( {d_{2} } \right) \). □
Discussion about the convergence of the series from the pricing formulas
We assume that the standardized density of log-returns for horizon τ, under the risk-neutral measure, is described by a continuous, smooth and positive function p(x) such that \( \mathop \int\nolimits \nolimits_{ - \infty }^{\infty } p\left( x \right)dx\, = \,1 \). Denote \( \hat{p}_{N}^{{}} \left( x \right): = \sum\nolimits_{k = 0}^{N} {a_{k}^{{}} } H_{k}^{{}} \left( x \right)z\left( x \right) \) the Gauss–Hermite expansion truncated after N terms. It is known that \( \hat{p}_{N}^{{}} \left( \cdot \right) \) converges pointwise (even uniformly on compact intervals) and in \( L^{2} \left( {\mathbf{\mathbb{R}}} \right) \) to p( · ).
Consider a constant b ≥ 0 such that \( \mathop \int\nolimits \nolimits_{ - \infty }^{\infty } e^{bx} p\left( x \right)dx\, < \,\infty \). For example, if \( b = \sigma \sqrt \tau \) this condition is due to the martingale restriction (i.e. E [STe−r(T−t)] = St).
For example consider the limit
$$ \mathop {\lim }\limits_{N \to \infty } \int\limits_{ - \infty }^{\infty } {e^{bx} \hat{p}_{N}^{{}} \left( x \right)dx} = \int\limits_{ - \infty }^{\infty } {e^{bx} p\left( x \right)dx} $$
This result cannot be proved using the Cauchy–Schwarz inequality because the function ebx is not in \( L^{2} \left( {\mathbf{\mathbb{R}}} \right) \). We present here an argument based on Abel-summability and Tauberian theorems (Hardy 1949).
Let
$$ \overline{{H_{k}^{{}} }} : = \frac{{H_{k}^{{}}}}{{\sqrt {\int\limits_{ - \infty }^{\infty } {H_{k}^{{}} \left( x \right)^{2} \omega \left( x \right)dx} } }} {\sqrt {2\pi }} $$
and
$$ \overline{{a_{k}^{{}} }} : = a_{k}{\frac{1}{\sqrt {2\pi }}}^{{}} \sqrt {\int_{ - \infty }^{\infty } {H_{k}^{{}} \left( x \right)^{2} \omega \left( x \right)dx} } $$
where \( \omega \left( x \right) = e^{{ - x^{2} }} = 2\pi z\left( x \right)^{2} \). We have that
$$ \int\limits_{ - \infty }^{\infty } {\overline{{H_{k}^{{}} }} \left( x \right)\overline{{H_{l}^{{}} }} \left( x \right){\frac{1}{{2\pi }}}\omega \left( x \right)dx} = \delta_{kl} $$
and \( \overline{{a_{k}^{{}} }} = \int_{ - \infty }^{\infty } {\overline{{H_{k}^{{}} }} z\left( x \right)p\left( x \right)dx} . \) Therefore, it follows that
$$ \begin{aligned} \int\limits_{ - \infty }^{\infty } {e^{bx} \hat{p}_{N}^{{}} \left( x \right)dx} & = \sum\limits_{k = 0}^{N} {a_{k}^{{}} } \int\limits_{ - \infty }^{\infty } {e^{bx} H_{k}^{{}} \left( x \right)z\left( x \right)dx} \\ & = \sum\limits_{k = 0}^{N} {\overline{{a_{k}^{{}} }} } \int\limits_{ - \infty }^{\infty } {e^{bx} \overline{{H_{k}^{{}} }} \left( x \right)z\left( x \right)dx} = \sum\limits_{k = 0}^{N} {\overline{{a_{k}^{{}} }} \overline{{q_{k}^{{}} }} } \\ \end{aligned} $$
here \( \overline{{q_{k}^{{}} }} : = \int_{ - \infty }^{\infty } {e^{bx} \overline{{H_{k}^{{}} }} z\left( x \right)dx} \).
If we denote by \( \overline{{\psi_{k}^{{}} }} : = \overline{{H_{k}^{{}} }} z \) the normalized Hermite functions (a complete orthonormal basis of \( L^{2} \left( {\mathbf{\mathbb{R}}} \right) \)) one has that:
$$ \begin{aligned} \overline{{a_{k}^{{}} }} & = \int\limits_{ - \infty }^{\infty } {p\left( x \right)\overline{{H_{k}^{{}} }} z\left( x \right)dx} = \left\langle {p,\overline{{\psi_{k}^{{}} }} } \right\rangle_{{L^{2} \left( {\mathbf{\mathbb{R}}} \right)}} < \infty \\ \overline{{q_{k}^{{}} }} & = \int\limits_{ - \infty }^{\infty } {h\left( x \right)\overline{{H_{k}^{{}} }} z\left( x \right)dx} = \left\langle {h,\overline{{\psi_{k}^{{}} }} } \right\rangle_{{L^{2} \left( {\mathbf{\mathbb{R}}} \right)}} < \infty \\ \end{aligned} $$
Denote by \( h\left( x \right) = e^{bx} \notin L^{2} \left( {\mathbf{\mathbb{R}}} \right) \) and
$$ h_{n} \left( x \right) = \sqrt {1 + \frac{1}{n}} e^{{\frac{{b^{2} }}{2}\frac{1}{n}}} e^{{b\sqrt {1 - \frac{1}{{n^{2} }}} x - \frac{1}{2}\frac{1}{n}x^{2} }} \in L^{2} \left( {\mathbf{\mathbb{R}}} \right). $$
Let \( \overline{{q_{k,n}^{{}} }} : = \left\langle {h_{n} ,\overline{{\psi_{k}^{{}} }} } \right\rangle_{{L^{2} \left( {\mathbf{\mathbb{R}}} \right)}} \). It follows that
$$ \mathop {\lim }\limits_{k \to \infty } \overline{{q_{k,n}^{{}} }} = 0,\sum\limits_{k = 0}^{\infty } {\overline{{a_{k}^{{}} }} \overline{{q_{k,n}^{{}} }} } = \left\langle {p,h_{n} } \right\rangle_{{L^{2} \left( {\mathbf{\mathbb{R}}} \right)}} < \infty $$
and
$$ \sum\limits_{k = 0}^{\infty } {\left| {\overline{{a_{k}^{{}} }} \overline{{q_{k,n}^{{}} }} } \right|} \le \left( {\sum\limits_{k = 0}^{\infty } {\left| {\overline{{a_{k}^{{}} }} } \right|^{2} } } \right)^{1/2} \left( {\sum\limits_{k = 0}^{\infty } {\left| {\overline{{q_{k,n}^{{}} }} } \right|^{2} } } \right)^{1/2} < \infty . $$
We have that (e.g. Gradshteyn et al. 2000, eq. 7.374.8, 7.376.1)
$$ \begin{aligned} \overline{{q_{k}^{{}} }} & : = \left\langle {h,\overline{{\psi_{k}^{{}} }} } \right\rangle_{{L^{2} \left( {\mathbf{\mathbb{R}}} \right)}} = e^{{\frac{{b^{2} }}{2}}} i^{k} \overline{{H_{k}^{{}} }} \left( { - bi} \right) \\ \overline{{q_{k,n}^{{}} }} & : = \left\langle {h_{n} ,\overline{{\psi_{k}^{{}} }} } \right\rangle_{{L^{2} \left( {\mathbf{\mathbb{R}}} \right)}} = \left( {\frac{{1 - \frac{1}{n}}}{{1 + \frac{1}{n}}}} \right)^{{\frac{k}{2}}} e^{{\frac{{b^{2} }}{2}}} i^{k} \overline{{H_{k}^{{}} }} \left( { - bi} \right) = \left( {\frac{{1 - \frac{1}{n}}}{{1 + \frac{1}{n}}}} \right)^{{\frac{k}{2}}} \overline{{q_{k}^{{}} }} \\ \end{aligned} $$
Since \( 0 < h_{n} < 2e^{{\frac{{b^{2} }}{2}}} \hbox{max} \left( {1,h} \right) \), \( \left\langle {p,\hbox{max} \left( {1,h} \right)} \right\rangle_{{L^{2} \left( {\mathbf{\mathbb{R}}} \right)}} < \infty \) and p > 0 it follows that
$$ \mathop {\lim }\limits_{n \to \infty } \sum\limits_{k = 0}^{\infty } {\overline{{a_{k}^{{}} }} \overline{{q_{k,n}^{{}} }} } = \mathop {\lim }\limits_{n \to \infty } \left\langle {p,h_{n} } \right\rangle_{{L^{2} \left( {\mathbf{\mathbb{R}}} \right)}} = \left\langle {p,\mathop {\lim }\limits_{n \to \infty } h_{n} } \right\rangle_{{L^{2} \left( {\mathbf{\mathbb{R}}} \right)}} = \left\langle {p,h} \right\rangle_{{L^{2} \left( {\mathbf{\mathbb{R}}} \right)}} < \infty $$
Therefore, the series \( \sum\nolimits_{k = 0}^{\infty } {\overline{{a_{k}^{{}} }} \overline{{q_{k}^{{}} }} } \) is Abel-summable to the limit \( \left\langle {p,h} \right\rangle_{{L^{2} \left( {\mathbf{\mathbb{R}}} \right)}} \). A series ∑
∞
k=0
ck is called Abel-summable to the limit l if limz↗1 ∑
∞
k=0
ckzk = l (e.g. Hardy 1949). If the Gauss–Hermite coefficients are such that one of the Tauberian conditions (Hardy 1949, p. 149) is satisfied, e.g. \( \overline{{a_{k}^{{}} }} \overline{{q_{k}^{{}} }} = O\left( {k^{ - 1} } \right) \), then it follows from the corresponding Tauberian theorem (Hardy 1949, ch. VII) that the series \( \sum\nolimits_{k = 0}^{\infty } {\overline{{a_{k}^{{}} }} \overline{{q_{k}^{{}} }} } \) converges (in the usual sense) and \( \sum\nolimits_{k = 0}^{\infty } {\overline{{a_{k}^{{}} }} \overline{{q_{k}^{{}} }} } = \left\langle {p,h} \right\rangle_{{L^{2} \left( {\mathbb{R}} \right)}} \). It is worth pointing out that, even if the Tauberian conditions cannot be verified, one can Abel-sum the series \( \sum\nolimits_{k = 0}^{\infty } {\overline{{a_{k}^{{}} }} \overline{{q_{k}^{{}} }} } \) to get the desired result \( \left\langle {p,h} \right\rangle_{{L^{2} \left( {\mathbf{\mathbb{R}}} \right)}} \).
Additional tables
Tables 6, 7 and 8 provide a more in-depth picture of the in-sample pricing performance of the methods under analysis. Table 9 deals with the comparison regarding the out-of-sample implied volatility root mean squared errors. Tables 10 and 11 present the in-sample and the out-of-sample mean relative absolute hedging errors.
Table 6 The in-sample mean absolute pricing error for the subsample January 2014–December 2014 Table 7 The in-sample IVRMSE Table 8 The in-sample IVRMSE for the subsample January 2014–December 2014 Table 9 The out-of-sample IVRMSE Table 10 The in-sample mean relative absolute daily hedging error Table 11 The out-of-sample mean relative absolute daily hedging error