Review of Derivatives Research

, Volume 22, Issue 3, pp 389–418 | Cite as

Empirical performance of reduced-form models for emission permit prices

  • Steffen HitzemannEmail author
  • Marliese Uhrig-Homburg


The value of emission permits in environmental markets derives from the particular design features of the underlying cap-and-trade system. In this paper, we evaluate a model framework for the price dynamics of emission permits which accounts for these features in a reduced-form way. Based on permit futures and option data from the European Union Emissions Trading System, the world’s largest environmental market, we show that model variants which represent the design of the system most accurately provide the best fit to historical futures prices and achieve the best option pricing performance. Our results suggest that the specific design of cap-and-trade systems directly translates to the dynamic properties of emission permit prices, and that models tailored to environmental markets are the best choice for related pricing and risk management decisions.


Emission permits Price dynamics Option pricing Carbon derivatives Environmental finance 

JEL Classification

G13 Q50 



  1. Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing models. Journal of Finance, 52(5), 2003–2049.CrossRefGoogle Scholar
  2. Benz, E., & Trück, S. (2009). Modeling the price dynamics of CO\(_2\) emission allowances. Energy Economics, 31(1), 4–15.CrossRefGoogle Scholar
  3. Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3, 167–179.CrossRefGoogle Scholar
  4. Broadie, M., Chernov, M., & Johannes, M. (2007). Model specification and risk premia: Evidence from futures options. Journal of Finance, 62(3), 1453–1490.CrossRefGoogle Scholar
  5. Carmona, R., Fehr, M., & Hinz, J. (2009). Optimal stochastic control and carbon price formation. SIAM Journal on Control and Optimization, 48(4), 2168–2190.CrossRefGoogle Scholar
  6. Carmona, R., Fehr, M., Hinz, J., & Porchet, A. (2010). Market design for emission trading schemes. SIAM Review, 52(3), 403–452.CrossRefGoogle Scholar
  7. Carmona, R., & Hinz, J. (2011). Risk-neutral models for emission allowance prices and option valuation. Management Science, 57(8), 1453–1468.CrossRefGoogle Scholar
  8. Carr, P., & Wu, L. (2009). Variance risk premiums. Review of Financial Studies, 22(3), 1311–1341.CrossRefGoogle Scholar
  9. Carr, P., & Wu, L. (2010). Stock options and credit default swaps: A joint framework for valuation and estimation. Journal of Financial Econometrics, 8(4), 409–449.CrossRefGoogle Scholar
  10. Casassus, J., & Collin-Dufresne, P. (2005). Stochastic convenience yield implied from commodity futures and interest rates. Journal of Finance, 60(5), 2283–2331.CrossRefGoogle Scholar
  11. Chesney, M., & Taschini, L. (2012). The endogenous price dynamics of emission allowances and an application to CO\(_2\) option pricing. Applied Mathematical Finance, 19(5), 447–475.CrossRefGoogle Scholar
  12. Christoffersen, P., Dorion, C., Jacobs, K., & Karoui, L. (2014). Nonlinear Kalman filtering in affine term structure models. Management Science, 60(9), 2248–2268.CrossRefGoogle Scholar
  13. Christoffersen, P., & Jacobs, K. (2004). The importance of the loss function in option valuation. Journal of Financial Economics, 72(2), 291–318.CrossRefGoogle Scholar
  14. Daskalakis, G., Psychoyios, D., & Markellos, R. N. (2009). Modeling CO\(_2\) emission allowance prices and derivatives: Evidence from the European trading scheme. Journal of Banking and Finance, 33(7), 1230–1241.CrossRefGoogle Scholar
  15. Dumas, B., Fleming, J., & Whaley, R. E. (1998). Implied volatility functions: Empirical tests. Journal of Finance, 53(6), 2059–2106.CrossRefGoogle Scholar
  16. Durbin, J., & Koopman, S. J. (2001). Time series analysis by state space methods. Oxford Statistical Science Series. Oxford: Oxford University Press.Google Scholar
  17. Grüll, G., & Taschini, L. (2009). A comparison of reduced-form permit price models and their empirical performances. Working paper.Google Scholar
  18. Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.Google Scholar
  19. Hitzemann, S., & Uhrig-Homburg, M. (2018). Equilibrium price dynamics of emission permits. Journal of Financial and Quantitative Analysis, 53(4), 1653–1678.CrossRefGoogle Scholar
  20. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45.CrossRefGoogle Scholar
  21. Karatzas, I., & Shreve, S. E. (1991). Brownian motion and stochastic calculus. Berlin: Springer.Google Scholar
  22. Paolella, M. S., & Taschini, L. (2008). An econometric analysis of emission allowance prices. Journal of Banking and Finance, 32(10), 2022–2032.CrossRefGoogle Scholar
  23. Rittler, D. (2012). Price discovery and volatility spillovers in the European Union emissions trading scheme: A high-frequency analysis. Journal of Banking and Finance, 36(3), 774–785.CrossRefGoogle Scholar
  24. Rosenberg, B. (1973). Random coefficients models. The analysis of a cross section of time series by stochastically convergent parameter regression. Annals of Economic and Social Measurement, 2(4), 399–428.Google Scholar
  25. Schwartz, E. S. (1997). The stochastic behavior of commodity prices: Implications for valuation and hedging. Journal of Finance, 52(3), 923–973.CrossRefGoogle Scholar
  26. Schwartz, E. S., & Smith, J. E. (2000). Short-term variations and long-term dynamics in commodity prices. Management Science, 46(7), 893–911.CrossRefGoogle Scholar
  27. Seifert, J., Uhrig-Homburg, M., & Wagner, M. (2008). Dynamic behavior of CO\(_2\) spot prices. Journal of Environmental Economics and Management, 56(2), 180–194.CrossRefGoogle Scholar
  28. Trolle, A. B., & Schwartz, E. S. (2009). Unspanned stochastic volatility and the pricing of commodity derivatives. Review of Financial Studies, 22(11), 4423–4461.CrossRefGoogle Scholar
  29. Trolle, A. B., & Schwartz, E. S. (2010). Variance risk premia in energy commodities. Journal of Derivatives, 17(3), 15–32.CrossRefGoogle Scholar
  30. Uhrig-Homburg, M., & Wagner, M. (2009). Futures price dynamics of CO\(_2\) emission allowances: An empirical analysis of the trial period. Journal of Derivatives, 17(2), 73–88.CrossRefGoogle Scholar
  31. van der Merwe, R., & Wan, E. A. (2001). The square-root unscented Kalman filter for state and parameter-estimation. In IEEE International Conference on Acoustics, Speech, and Signal Processing.Google Scholar
  32. Wagner, M.W. (2007). CO \(_2\)-Emissionszertifikate—Preismodellierung und Derivatebewertung. Ph.D. thesis, University of Karlsruhe.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Finance and EconomicsRutgers Business SchoolPiscatawayUSA
  2. 2.Institute for FinanceKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations