Review of Derivatives Research

, Volume 17, Issue 2, pp 125–159 | Cite as

A closed-form solution for options with ambiguity about stochastic volatility

Article

Abstract

We derive a closed-form solution for the price of a European call option in the presence of ambiguity about the stochastic process that determines the variance of the underlying asset’s return. The option pricing formula of Heston (Rev Financ Stud 6(2):327–343, 1993) is a particular case of ours, corresponding to the case in which there is no ambiguity (uncertainty is exclusively risk). In the presence of ambiguity, the variance uncertainty price becomes either a convex or a concave function of the instantaneous variance, depending on whether the variance ambiguity price is negative or positive. We find that if the variance ambiguity price is positive, the option price is decreasing in the level of ambiguity (across all moneyness levels). The opposite happens if the variance ambiguity price is negative. This option pricing model can be used to address various empirical research topics in the future.

Keywords

Option pricing Stochastic volatility Ambiguity 

JEL Classification

C61 D81 G13 

References

  1. Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing models. Journal of Finance, 52(5), 2003–2049.CrossRefGoogle Scholar
  2. Bakshi, G., & Kapadia, N. (2003). Volatility risk premium embedded in individual equity options: Some new insights. Journal of Derivatives, 11(1), 45–54.CrossRefGoogle Scholar
  3. Barndorff-Nielsen, O. E., & Shephard, N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. Journal of The Royal Statistical Society Series B, 63(2), 167–241.CrossRefGoogle Scholar
  4. Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. Review of Financial Studies, 9(1), 69–107.CrossRefGoogle Scholar
  5. Bates, D. S. (2000). Post-’87 crash fears in the S&P 500 futures option market. Journal of Econometrics, 94(1–2), 181–238.CrossRefGoogle Scholar
  6. Black, F., & Scholes, M. S. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.CrossRefGoogle Scholar
  7. Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics, 52(1–2), 5–59.CrossRefGoogle Scholar
  8. Bollerslev, T., & Mikkelsen, H. O. (1996). Modeling and pricing long memory in stock market volatility. Journal of Econometrics, 73(1), 151–184.CrossRefGoogle Scholar
  9. Bollerslev, T., & Todorov, V. (2011). Tails, fears and risk premia. Journal of Finance, 66(6), 2165–2221.CrossRefGoogle Scholar
  10. Camerer, C., & Weber, M. (1992). Recent developments in modeling preferences: Uncertainty and ambiguity. Journal of Risk and Uncertainty, 5(4), 325–370.CrossRefGoogle Scholar
  11. Cao, H. H., Wang, T., & Zhang, H. H. (2005). Model uncertainty, limited market participation, and asset prices. Review of Financial Studies, 18(4), 1219–1251.CrossRefGoogle Scholar
  12. Carr, P., & Wu, L. (2003). The finite moment log stable process and option pricing. Journal of Finance, 58(2), 753–778.CrossRefGoogle Scholar
  13. Carr, P., & Wu, L. (2004). Time-changed Levy processes and option pricing. Journal of Financial Economics, 71(1), 113–141.CrossRefGoogle Scholar
  14. Carr, P., & Wu, L. (2009). Variance risk premia. Review of Financial Studies, 22(3), 1311–1341.CrossRefGoogle Scholar
  15. Cheng, X., & Riedel, F. (2013). Optimal stopping under ambiguity in continuous time. Mathematics and Financial Economics, 7(1), 29–68.CrossRefGoogle Scholar
  16. Cheridito, P., Filipovic, D., & Kimmel, R. L. (2007). Market price of risk specifications for affine models: Theory and evidence. Journal of Financial Economics, 83(1), 123–170.CrossRefGoogle Scholar
  17. Chopra, V. K., & Ziemba, W. T. (1993). The effect of errors in means, variances, and covariances on optimal portfolio choice. The Journal of Portfolio Management, 19(2), 6–11.Google Scholar
  18. Chudjakow, T., & Vorbrink, J. (2009). Exercise strategies for American exotic options under ambiguity. In Working papers 421, Bielefeld University, Institute of Mathematical Economics.Google Scholar
  19. Cox, J. C., Ingersoll, J., & Ross, S. A. (1985a). An intertemporal general equilibrium model of asset prices. Econometrica, 53(2), 363–384.CrossRefGoogle Scholar
  20. Cox, J. C., Ingersoll, J., & Ross, S. A. (1985b). A theory of the term structure of interest rates. Econometrica, 53(2), 385–407.CrossRefGoogle Scholar
  21. Cvitanic, J., Pham, H., & Touzi, N. (1999). Super-replication in stochastic volatility models under portfolio constrains. Journal of Applied Probability, 36(2), 523–545.CrossRefGoogle Scholar
  22. Drechsler, I. (2011). Uncertainty, time-varying fear, and asset prices. The Journal of Finance (forthcoming).Google Scholar
  23. Drechsler, I., & Yaron, A. (2011). What vol got to do with it. Review of Financial Studies, 24(1), 1–45.CrossRefGoogle Scholar
  24. Driessen, J., Maenhout, P., & Vilkov, G. (2009). The price of correlation risk: Evidence from equity options. The Journal of Finance, 3, 1377–1406.CrossRefGoogle Scholar
  25. Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68(6), 1343–1376.CrossRefGoogle Scholar
  26. Egloff, D., Leippold, M., & Wu, L. (2010). The term structure of variance swap rates and optimal variance swap investments. Journal of Financial and Quantitative Analysis, 45(5), 1279–1310.CrossRefGoogle Scholar
  27. Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The Quarterly Journal of Economics, 75(4), 643–669.CrossRefGoogle Scholar
  28. Epstein, L. G. (2010). A paradox for the smooth ambiguity model of preference. Econometrica, 78(6), 2085–2099.CrossRefGoogle Scholar
  29. Epstein, L. G., & Schneider, M. (2003). Recursive multiple-priors. Journal of Economic Theory, 113(1), 1–31.CrossRefGoogle Scholar
  30. Epstein, L. G., & Schneider, M. (2010). Ambiguity and asset markets. Annual Review of Financial Economics, 2, 315–346.CrossRefGoogle Scholar
  31. Eraker, B. (2004). Do stock prices and volatility jump? Reconciling evidence from spot and option prices. Journal of Finance, 59(3), 1367–1404.CrossRefGoogle Scholar
  32. Eraker, B., Johannes, M., & Polson, N. (2003). The impact of jumps in volatility and returns. Journal of Finance, 58(3), 1269–1300.CrossRefGoogle Scholar
  33. Etner, J., Jeleva, M., & Tallon, J.-M. (2012). Decision theory under ambiguity. Journal of Economic Surveys, 26(2), 234–270.CrossRefGoogle Scholar
  34. Faria, G., & Correia-da-Silva, J. (2012). The price of risk and ambiguity in an intertemporal general equilibrium model of asset prices. Annals of Finance, 8(4), 507–531.CrossRefGoogle Scholar
  35. Follmer, H., & Leukert, P. (2000). Efficient hedging: Cost versus shortfall risk. Finance and Stochastics, 4(2), 117–146.CrossRefGoogle Scholar
  36. Follmer, H. & Sondermann, D. (1986). Hedging of non-redundant contingent claims. Contributions to Mathematical Economics, pp. 205–223.Google Scholar
  37. Gagliardini, P., Porchia, P., & Trojani, F. (2009). Ambiguity aversion and the term structure of interest rates. Review of Financial Studies, 22(10), 4157–4188.CrossRefGoogle Scholar
  38. Garlappi, L., Uppal, R., & Wang, T. (2007). Portfolio selection with parameter and model uncertainty: A multi-prior approach. Review of Financial Studies, 20(1), 41–81.CrossRefGoogle Scholar
  39. Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Journal of Mathematical Economics, 18(2), 141–153.CrossRefGoogle Scholar
  40. Guillaume, F., & Schoutens, W. (2012). Calibration risk: Illustrating the impact of calibration risk under the Heston model. Review of Derivatives Research, 15(1), 57–79.CrossRefGoogle Scholar
  41. Hansen, L. P., & Sargent, T. J. (2001). Acknowledging misspecification in macroeconomic theory. Review of Economic Dynamics, 4(3), 519–535.CrossRefGoogle Scholar
  42. Hansen, L. P., Sargent, T. J., & Wang, N. E. (2002). Robust permanent income and pricing with filtering. Macroeconomic Dynamics, 6(01), 40–84.CrossRefGoogle Scholar
  43. Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327–343.CrossRefGoogle Scholar
  44. Heston, S. L., & Nandi, S. (2000). A closed-form GARCH option valuation model. Review of Financial Studies, 13(3), 585–625.CrossRefGoogle Scholar
  45. Hille, E. (1976). Ordinary differential equations in the complex domain. Wiley, reprinted by Dover, 1997.Google Scholar
  46. Hull, J. C., & White, A. D. (1987). The pricing of options on assets with stochastic volatilities. Journal of Finance, 42(2), 281–300.CrossRefGoogle Scholar
  47. Jaimungal, S. (2011). Irreversible investments and ambiguity aversion. Unpublished manuscript.Google Scholar
  48. Johnson, H., & Shanno, D. (1987). Option pricing when the variance is changing. Journal of Financial & Quantitative Analysis, 22(2), 143–151.CrossRefGoogle Scholar
  49. Kamien, M. I. & Schwartz, N. L. (1991). Dynamic optimization, 2nd ed. North-Holland.Google Scholar
  50. Kast, R., Lapied, A., & Roubaud, D. (2010). Real options under ambiguity: The case for Choquet–Brownian motions. Unpublished manuscript.Google Scholar
  51. Klibanoff, P., Marinacci, M., & Mukerji, S. (2005). A smooth model of decision making under ambiguity. Econometrica, 73(6), 1849–1892.CrossRefGoogle Scholar
  52. Klibanoff, P., Marinacci, M., & Mukerji, S. (2012). On the smooth ambiguity model: A reply. Econometrica, 80(3), 1303–1321.CrossRefGoogle Scholar
  53. Knight, F. H. (1921). Risk. Houghton Mifflin, Boston: Uncertainty and profit.Google Scholar
  54. Liu, J., Pan, J., & Wang, T. (2005). An equilibrium model of rare-event premia and its implications for option smirks. Review of Financial Studies, 18, 131–164.CrossRefGoogle Scholar
  55. Lucas, R. (1978). Asset prices in an exchange economy. Econometrica, 46(6), 1429–1445.CrossRefGoogle Scholar
  56. Maccheroni, F., Marinacci, M., & Rustichini, A. (2006). Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica, 74(6), 1447–1498.CrossRefGoogle Scholar
  57. Madan, D., Carr, P., & Chang, E. (1998). The variance gamma process and option pricing. European Finance Review, 2, 79–105.CrossRefGoogle Scholar
  58. Maenhout, P. J. (2006). Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium. Journal of Economic Theory, 128(1), 136–163.CrossRefGoogle Scholar
  59. Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics, 4(1), 141–183.CrossRefGoogle Scholar
  60. Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1–2), 125–144.CrossRefGoogle Scholar
  61. Merton, R. C. (1980). On estimating the expected return on the market: An explanatory investigation. Journal of Financial Economics, 8, 323–361.CrossRefGoogle Scholar
  62. Miao, J., & Wang, N. (2009). Risk, uncertainty, and option exercise. Unpublished Manuscript.Google Scholar
  63. Miao, J., Wei, B., & Zhou, H. (2012). Ambiguity aversion and variance premium. Unpublished manuscript.Google Scholar
  64. Mijatovic, A., & Schneider, P. (2013). Empirical asset pricing with nonlinear risk premia. Journal of Financial Econometrics, (forthcoming).Google Scholar
  65. Mikhailov, S., & Nogel, U. (2003). Heston stochastic volatility model implementation, calibration and some extensions. Wilmott (July), pp. 74–79.Google Scholar
  66. Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an integrated time-series study. Journal of Financial Economics, 63(1), 3–50.CrossRefGoogle Scholar
  67. Riedel, F. (2009). Optimal stopping with multiple priors. Econometrica, 77(3), 857–908.CrossRefGoogle Scholar
  68. Rouah, F. D., & Vainberg, G. (2007). Option pricing models & volatility using excel-VBA. Hoboken, New Jersey: Wiley.Google Scholar
  69. Rubinstein, M. (1994). Implied binomial trees. Journal of Finance, 49(3), 771–818.CrossRefGoogle Scholar
  70. Scott, L. O. (1987). Option pricing when the variance changes randomly: Theory, estimation, and an application. The Journal of Financial and Quantitative Analysis, 22(4), 419–438.CrossRefGoogle Scholar
  71. Stein, E. M., & Stein, J. C. (1991). Stock price distributions with stochastic volatility: An analytic approach. Review of Financial Studies, 4(4), 727–752.CrossRefGoogle Scholar
  72. Taylor, S. J. (2005). Asset price, dynamics, volatility, and prediction. Published by Princeton University Press.Google Scholar
  73. Todorov, V. (2010). Variance risk-premium dynamics: The role of jumps. Review of Financial Studies, 23(1), 345–383.CrossRefGoogle Scholar
  74. Trojani, F., & Vanini, P. (2004). Robustness and ambiguity aversion in general equilibrium. Review of Finance, 8(2), 279–324.CrossRefGoogle Scholar
  75. Ui, T. (2011). The ambiguity premium vs. the risk premium under limited market participation. Review of Finance, 15(2), 245–275.CrossRefGoogle Scholar
  76. Wiggins, J. B. (1987). Option values under stochastic volatility: Theory and empirical estimates. Journal of Financial Economics, 19(2), 351–372.CrossRefGoogle Scholar
  77. Zhang, J. E., & Shu, J. (2003). Pricing S&P500 index options with Heston model. In Computational intelligence for financial engineering. Proceedings. 2003 IEEE international conference.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CEF.UP and Faculdade de EconomiaUniversidade do PortoPortoPortugal
  2. 2.RGEAUniversidad de VigoVigoSpain

Personalised recommendations