Tail Dependence in International Real Estate Securities Markets



“Tail dependence” characterizes the cross market linkages during stressful times. Analyzing tail dependence is of primary interest to portfolio managers who systematically monitor the co-movements of asset markets. However, the relevant literature on real estate securities markets is very thin. Our study extends the literature by using the flexible symmetrized Joe-Clayton (SJC) copula to estimate the tail dependences for six major global markets (U.S., U.K., Japan, Australia, Hong Kong, and Singapore). In implementing the SJC copula, we model the marginal distributions of returns through a semi-parametric method which has never been applied to real estate returns. Our major findings suggest that international markets display different strength and dynamics of tail dependence. We extensively discuss the implications of our findings for financial practices such as portfolio tail diversifications, portfolio selections, portfolio risk management and hedging strategies. Our study also demonstrates that the widely used linear correlation is an inadequate measure of market linkages, especially during periods of crisis.


Tail dependence Symmetrized Joe-Clayton (SJC) copula Portfolio risk management Real estate securities markets 


  1. Alcock, J., & Hatherley, A. (2007). Portfolio construction incorporating asymmetric dependence structures: a user’s guide. Accounting and Finance, 47, 447–472.CrossRefGoogle Scholar
  2. Ang, A., & Bekaert, G. (2002). International asset allocation with regime shifts. Review of Financial Studies, 15, 1137–1187.CrossRefGoogle Scholar
  3. Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of Financial Economics, 63, 443–494.CrossRefGoogle Scholar
  4. Bae, K. H., Karolyi, G. A., & Stulz, R. M. (2003). A new approach to measuring financial contagion. Review of Financial Studies, 16, 717–764.CrossRefGoogle Scholar
  5. Balkema, A. A., & de Haan, L. (1974). Residual lifetime at great age. Annals of Probability, 2, 792–804.CrossRefGoogle Scholar
  6. Bollerslev, T. G. (1990). Modeling the coherence in short-run nominal exchange rates: a multivariate generalized GARCH model. Review of Economics and Statistics, 72, 498–505.CrossRefGoogle Scholar
  7. Brooks, R., & Del Negro, M. (2005). Country versus region effects in international stock returns (pp. 67–72). Summer: Journal of Portfolio Management.Google Scholar
  8. Brooks, R., & Del Negro, M. (2006). Firm-level evidence on international stock market comovement. Review of Finance, 10, 69–98.CrossRefGoogle Scholar
  9. Cherubini, U., & Romagnoli, S. (2009). Computing the volume of n-dimensional copulas. Applied Mathematical Finance, 16, 307–314.CrossRefGoogle Scholar
  10. Danielsson, J., & de Vries, C. (2000). Value-at-risk and extreme returns. Annales d’Economie et de Statistique, 60, 239–270.Google Scholar
  11. Embrechts, P., McNeil, A., & Straumann, D. (1999). Correlation: pitfalls and alternatives. RISK, 12, 69–71.Google Scholar
  12. Embrechts, P., Lindskog, F., & McNeil, A. (2003). Modeling dependence with copulas and applications to risk management In S. Rachev (Ed.), Handbook of heavy tailed distributions in finance. Elsevier, 329–384.Google Scholar
  13. Engle, R. F. (2002). Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics, 20, 339–350.CrossRefGoogle Scholar
  14. Erb, C. B., Harvey, C. R., & Viskanta, T. E. (1994). Forecasting international equity correlations. Financial Analysts Journal, 50, 32–45.CrossRefGoogle Scholar
  15. Forbes, K., & Rigobon, R. (2002). No contagion, only interdependence: measuring stock market comovements. Journal of Finance, 57, 2223–2261.CrossRefGoogle Scholar
  16. Garcia, R., & Tsafack, G. (2007). Dependence structure and extreme co-movements in international equity and bond markets. Working paper, University of Montreal.Google Scholar
  17. Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779–1801.Google Scholar
  18. Goorah, A. (2007). Real estate risk management with copulas. Journal of Real Estate Research, 24, 289–311.Google Scholar
  19. Hartmann, P., Straetmans, S., & de Vries, C. G. (2004). Asset market linkages in crisis periods. Review of Economics and Statistics, 86, 313–326.CrossRefGoogle Scholar
  20. Horng, Y. S., & Wei, P. H. (1999). An empirical study of derivatives use in the REIT industry. Real Estate Economics, 27, 561–586.CrossRefGoogle Scholar
  21. Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall.Google Scholar
  22. Johnson, R. A., & Wichern, D. W. (2005). Applied multivariate statistical analysis. Prentice Hall.Google Scholar
  23. King, M., Sentana, E., & Sushil, W. (1994). Volatility and links between national stock markets. Econometrica, 62, 901–933.CrossRefGoogle Scholar
  24. Lin, W. L., Engle, R., & Ito, T. (1994). Do bulls and bears move across borders? International transmission of stock returns and volatility. Review of Financial Studies, 7, 507–538.CrossRefGoogle Scholar
  25. Liow, H. K., Ho, K. H. D., Ibrahim, M. F., & Chen, Z. (2009). Correlation and volatility dynamics in international real estate securities markets. Journal of Real Estate Finance and Economics, 39, 202–223.CrossRefGoogle Scholar
  26. Longin, F., & Solnik, B. (1995). Is the correlation in international equity returns constant:1960–1990? Journal of International Money and Finance, 14, 3–26.CrossRefGoogle Scholar
  27. Longin, F., & Solnik, B. (2001). Extreme correlation of international equity markets. Journal of Finance, 56, 649–676.CrossRefGoogle Scholar
  28. Mendes, B. V. M., & Leal, R. P. C. (2009). Incorporating tail dependence into Markowitz mean-variance model. Quantitative Finance, forthcoming.Google Scholar
  29. Neftci, S. N. (2000). Value at risk calculations, extreme events, and tail estimation. Journal of Derivatives, 7, 23–38.CrossRefGoogle Scholar
  30. Nelson, R. B. (2006). An introduction to copulas. Springer Series in Statistics.Google Scholar
  31. Patton, A. J. (2006). Modeling asymmetric exchange rate dependence. International Economic Review, 47, 527–556.CrossRefGoogle Scholar
  32. Patton, A. J. (2009). Copula-based models for financial time series In T. G. Anderson (Ed.), Handbook of financial time series. Springer, 767–781.Google Scholar
  33. Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 3, 119–131.CrossRefGoogle Scholar
  34. Poon, S. H., Rockinger, M., & Tawn, J. (2004). Extreme value dependence in financial markets: diagnostics, models, and financial implications. Review of Financial Studies, 17, 581–610.CrossRefGoogle Scholar
  35. Rachev, S., Menn, C., & Fabozzi, F. (2005). Fat-tailed and skewed asset returns distributions. New Jersey: Wiley.Google Scholar
  36. Sklar, A. (1959). Fonctions de Réparitition à n dimensions et Leurs Marges. Publications de l’Institut de Statistique de l’Université de Paris, 8, 229–231.Google Scholar
  37. Sun, W., Rachev, S., Fabozzi, F. J., & Kalev, P. S. (2009). A new approach to modeling co-movement of international equity markets: evidence of unconditional copula-based simulation of tail dependence. Empirical Economics, 36, 201–229.CrossRefGoogle Scholar
  38. Tsafack, G. (2009). Asymmetric dependence implications for extreme risk management. Journal of Derivatives, 17, 7–20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Real Estate and Housing, Department of Marketing and Consumer Studies, College of Management and EconomicsUniversity of GuelphGuelphCanada
  2. 2.School of BusinessUniversity of AlbertaEdmontonCanada

Personalised recommendations