Oculomotor planning in RAN and reading: a strong test of the visual scanning hypothesis

Abstract

The current study investigates the validity of the visual scanning hypothesis, which posits that rapid automatized naming (RAN) predicts reading skill partly because both require the ability to perform rapid sequential eye-movements. Our data consist of eye-movements collected while 124 young English speaking adults of variable reading skill read passages and performed six modifications of RAN. These modifications isolated articulatory, lexical, oculomotor and attentional task components of RAN. A further requirement for participants was to perform each of the RAN tasks in two directions—the habitual direction of reading (RAN forward) and from right to left and top to bottom (RAN backward). Participants who were better at oculomotor control in RAN-like tasks were better readers regardless of task type or direction. Our most crucial finding is that the explanatory contribution of oculomotor control in the RAN-reading relationship is independent of the practice effect afforded by the habitual direction of visual scanning in reading.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Notes

  1. 1.

    Performance of this cohort in RAN forward (but not RAN backward) conditions and passage reading is reported as Study 2 in Kuperman et al. (2016). Due to differences in aggregation (reading eye-movements are averaged by participant in this study, rather than by both a participant and text complexity) and trimming, minor differences in descriptive statistics may be observed between present analyses and those in Kuperman et al. Our analysis with different types of data trimming showed identical critical patterns.

  2. 2.

    We thank an anonymous reviewer for this suggestion.

References

  1. Acheson, D. J., Wells, J. B., & MacDonald, M. C. (2008). New and updated tests of print exposure and reading abilities in college students. Behavior Research Methods, 40(1), 278–289.

    Article  Google Scholar 

  2. Afsari, Z., Ossandón, J. P., & König, P. (2016). The dynamic effect of reading direction habit on spatial asymmetry of image perception. Journal of vision, 16(11), 8–8.

    Article  Google Scholar 

  3. Arnell, K. M., Joanisse, M. F., Klein, R. M., Busseri, M. A., & Tannock, R. (2009). Decomposing the relation between Rapid Automatized Naming (RAN) and reading ability. Canadian Journal of Experimental Psychology, 63(3), 173–184.

    Article  Google Scholar 

  4. Badian, N. A., McAnulty, G. B., Duffy, F. H., & Als, H. (1990). Prediction of dyslexia in kindergarten boys. Annals of Dyslexia, 40(1), 152–169. https://doi.org/10.1007/BF02648146.

    Article  Google Scholar 

  5. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  6. Blythe, H. I. (2014). Developmental changes in eye movements and visual information encoding associated with learning to read. Current Directions in Psychological Science, 23(3), 201–207.

    Article  Google Scholar 

  7. Brizzolara, D., Chilosi, A., Cipriani, P., Di Filippo, G., Gasperini, F., Mazzotti, S., et al. (2006). Do phonologic and rapid automatized naming deficits differentially affect dyslexic children with and without a history of language delay? A study of Italian dyslexic children. Cognitive and Behavioral Neurology, 19(3), 141–149. https://doi.org/10.1097/01.wnn.0000213902.59827.19.

    Article  Google Scholar 

  8. Choi, W., Lowder, M. W., Ferreira, F., & Henderson, J. M. (2015). Individual differences in the perceptual span during reading: Evidence from the moving window technique. Attention, Perception, & Psychophysics, 77(7), 2463–2475.

    Article  Google Scholar 

  9. Clarke, P., Hulme, C., & Snowling, M. (2005). Individual differences in RAN and reading: A response timing analysis. Journal of Research in Reading, 28(2), 73–86. https://doi.org/10.1111/j.1467-9817.2005.00255.x.

    Article  Google Scholar 

  10. Di Filippo, G., Brizzolara, D., Chilosi, A., De Luca, M., Judica, A., Pecini, C., et al. (2005). Rapid naming, not cancellation speed or articulation rate, predicts reading in an orthographically regular language (Italian). Child Neuropsychology, 11(4), 349–361.

    Article  Google Scholar 

  11. Doyle, R. E. (2005). The role of eye movements in the relationship between Rapid Automatized Naming and reading ability. Master’s Thesis. Retrieved from http://scholarworks.gsu.edu/psych_theses/5.

  12. Fox, J. (2003). Effect displays in R for generalised linear models. Journal of Statistical Software, 8(15), 1–27.

    Article  Google Scholar 

  13. Franceschini, S., Gori, S., & Ruffino, M. (2012). Report a causal link between visual spatial attention and reading acquisition. Current Biology, 22(9), 814–819. https://doi.org/10.1016/j.cub.2012.03.013.

    Article  Google Scholar 

  14. Furnes, B., & Samuelsson, S. (2011). Phonological awareness and rapid automatized naming predicting early development in reading and spelling: Results from a cross-linguistic longitudinal study. Learning and Individual Differences, 21(1), 85–95.

    Article  Google Scholar 

  15. Georgiou, G. K., Papadopoulos, T. C., Fella, A., & Parrila, R. (2012). Rapid naming speed components and reading development in a consistent orthography. Journal of Experimental Child Psychology, 112(1), 1–17.

    Article  Google Scholar 

  16. Ho, C. S.-H., Chan, D. W.-O., Tsang, S.-M., & Lee, S.-H. (2002). The cognitive profile and multiple-deficit hypothesis in Chinese developmental dyslexia. Developmental Psychology, 38(4), 543–553. https://doi.org/10.1037/0012-1649.38.4.543.

    Article  Google Scholar 

  17. Inhoff, A. W., Pollatsek, A., Posner, M. I., & Rayner, K. (1989). Covert attention and eye movements during reading. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 41(1), 63–89. https://doi.org/10.1080/14640748908402353.

    Article  Google Scholar 

  18. Jones, M. W., Ashby, J., & Branigan, H. P. (2012). Dyslexia and fluency: Parafoveal and foveal influences on rapid automatized naming. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 554–567. https://doi.org/10.1037/a0029710.

    Google Scholar 

  19. Jones, M. W., Obregón, M., Louise Kelly, M., & Branigan, H. P. (2008). Elucidating the component processes involved in dyslexic and non-dyslexic reading fluency: An eye-tracking study. Cognition, 109(3), 389–407. https://doi.org/10.1016/j.cognition.2008.10.005.

    Article  Google Scholar 

  20. Jordan, T. R., Almabruk, A. A., Gadalla, E. A., McGowan, V. A., White, S. J., Abedipour, L., et al. (2014). Reading direction and the central perceptual span: Evidence from Arabic and English. Psychonomic Bulletin & Review, 21(2), 505–511.

    Article  Google Scholar 

  21. Kuperman, V., & Van Dyke, J. A. (2011). Effects of individual differences in verbal skills on eye-movement patterns during sentence reading. Journal of Memory and Language, 65(1), 42–73. https://doi.org/10.1016/j.jml.2011.03.002.

    Article  Google Scholar 

  22. Kuperman, V., Van Dyke, J. A., & Henry, R. (2016). Eye-movement control in RAN and reading. Scientific Studies of Reading, 20(2), 173–188. https://doi.org/10.1080/10888438.2015.1128435.

    Article  Google Scholar 

  23. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. (2015). lmerTest: Tests for random and fixed effects for linear mixed effect models [lmer objects of lme4 package].

  24. Logan, J. A., Schatschneider, C., & Wagner, R. K. (2011). Rapid serial naming and reading ability: The role of lexical access. Reading and Writing, 24(1), 1–25.

    Article  Google Scholar 

  25. Lyytinen, H., Erskine, J., Tolvanen, A., Torppa, M., Poikkeus, A.-M., & Lyytinen, P. (2006). Trajectories of reading development: A follow-up from birth to school age of children with and without risk for dyslexia. Merrill-Palmer Quarterly, 52(3), 514–546. https://doi.org/10.1353/mpq.2006.0031.

    Article  Google Scholar 

  26. Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior Research Methods, 43(3), 679–690.

    Article  Google Scholar 

  27. McConkie, G. W., & Rayner, K. (1975). The span of the effective stimulus during a fixation in reading. Attention, Perception, & Psychophysics, 17(6), 578–586.

    Article  Google Scholar 

  28. Moore, M., & Gordon, P. C. (2015). Reading ability and print exposure: Item response theory analysis of the author recognition test. Behavior Research Methods, 47(4), 1095–1109.

    Article  Google Scholar 

  29. Norton, E. S., & Wolf, M. (2012). Rapid Automatized Naming (RAN) and reading fluency: Implications for understanding and treatment of reading disabilities. Annual Review of Psychology, 63(1), 427–452. https://doi.org/10.1146/annurev-psych-120710-100431.

    Article  Google Scholar 

  30. Onochie-Quintanilla, E., Defior, S., & Simpson, I. C. (2017). Visual multi-element processing as a pre-reading predictor of decoding skill. Journal of Memory and Language, 94, 134–148.

    Article  Google Scholar 

  31. Paterson, K. B., McGowan, V. A., White, S. J., Malik, S., Abedipour, L., & Jordan, T. R. (2014). Reading direction and the central perceptual span in Urdu and English. PLoS ONE, 9(2), e88358. https://doi.org/10.1371/journal.pone.0088358.

    Article  Google Scholar 

  32. Pollatsek, A., Bolozky, S., Well, A. D., & Rayner, K. (1981). Asymmetries in the perceptual span for Israeli readers. Brain and Language, 14(1), 174–180.

    Article  Google Scholar 

  33. Protopapas, A., Altani, A., & Georgiou, G. K. (2013a). Development of serial processing in reading and rapid naming. Journal of Experimental Child Psychology, 116(4), 914–929. https://doi.org/10.1016/j.jecp.2013.08.004.

    Article  Google Scholar 

  34. Protopapas, A., Altani, A., & Georgiou, G. K. (2013b). RAN backward: A test of the visual scanning hypothesis. Scientific Studies of Reading, 17(6), 453–461.

    Article  Google Scholar 

  35. R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  36. Rayner, K. (1986). Eye movements and the perceptual span in beginning and skilled readers. Journal of Experimental Child Psychology, 41(2), 211–236.

    Article  Google Scholar 

  37. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422. https://doi.org/10.1037/0033-2909.124.3.372.

    Article  Google Scholar 

  38. Rayner, K., Slattery, T. J., & Bélanger, N. N. (2010). Eye movements, the perceptual span, and reading speed. Psychonomic Bulletin & Review, 17(6), 834–839.

    Article  Google Scholar 

  39. Schatschneider, C., Fletcher, J. M., Francis, D. J., Carlson, C. D., & Foorman, B. R. (2004). Kindergarten prediction of reading skills: A longitudinal comparative analysis. Journal of Educational Psychology, 96(2), 265–282. https://doi.org/10.1037/0022-0663.96.2.265.

    Article  Google Scholar 

  40. Snowling, M. J., Gallagher, A., & Frith, U. (2003). Family risk of dyslexia is continuous: Individual differences in the precursors of reading skill. Child Development, 74(2), 358–373. https://doi.org/10.1111/1467-8624.7402003.

    Article  Google Scholar 

  41. Swanson, H. L., Trainin, G., Necoechea, D. M., & Hammill, D. D. (2003). Rapid naming, phonological awareness, and reading: A meta-analysis of the correlation evidence. Review of Educational Research, 73(4), 407–440. https://doi.org/10.3102/00346543073004407.

    Article  Google Scholar 

  42. van den Bos, K. P., Zijlstra, B. J., & lutje Spelberg, H. C. (2002). Life-span data on continuous-naming speeds of numbers, letters, colors, and pictured objects, and word-reading speed. Scientific Studies of Reading, 6(1), 25–49.

    Article  Google Scholar 

  43. Veldre, A., & Andrews, S. (2014). Lexical quality and eye movements: Individual differences in the perceptual span of skilled adult readers. The Quarterly Journal of Experimental Psychology, 67, 703–727. https://doi.org/10.1080/17470218.2013.826258.

    Article  Google Scholar 

  44. Wakamiya, E., Okumura, T., Nakanishi, M., Takeshita, T., Mizuta, M., Kurimoto, N., et al. (2011). Effects of sequential and discrete rapid naming on reading in Japanese children with reading difficulty. Brain and Development, 33(6), 487–493.

    Article  Google Scholar 

  45. Wiederholt, J. L., & Bryant, B. R. (2001). Gray oral reading test-(GORT-4). Austin, TX: Pro-Ed.

    Google Scholar 

  46. Wimmer, H. (1993). Characteristics of developmental dyslexia in a regular writing system. Applied Psycholinguistics, 14(01), 1–33.

    Article  Google Scholar 

  47. Wolf, M., & Bowers, P. G. (1999). The double-deficit hypothesis for the developmental dyslexias. Journal of Educational Psychology, 91(3), 415–438. https://doi.org/10.1037/0022-0663.91.3.415.

    Article  Google Scholar 

  48. Yan, M., Pan, J., Laubrock, J., Kliegl, R., & Shu, H. (2013). Parafoveal processing efficiency in rapid automatized naming: A comparison between Chinese normal and dyslexic children. Journal of Experimental Child Psychology, 115(3), 579–589.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the SSHRC Graduate Fellowship to the first author; the NIH R01 HD 073288 (PI Julie A. Van Dyke) to the second and third authors; and by the Natural Sciences and Engineering Research Council or Canada (NSERC) Discovery Grant 402395-2012, the McMaster Arts Research Board funding, the Early Research Award from the Ontario Ministry of Research and Innovation, the CFI equipment grant, the Canada Research Chair (Tier 2; Kuperman, PI), and the SSHRC Partnership Training Grant 895-2016-1008 (Libben, PI) to the third author. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Canadian government. An earlier version of this project was presented at the European Conference for Eye Movements, Aug 2017, Wuppertal, Germany.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Regina Henry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henry, R., Van Dyke, J.A. & Kuperman, V. Oculomotor planning in RAN and reading: a strong test of the visual scanning hypothesis. Read Writ 31, 1619–1643 (2018). https://doi.org/10.1007/s11145-018-9856-3

Download citation

Keywords

  • RAN
  • Oculomotor control
  • Visual scanning hypothesis
  • Reading
  • Scanning direction