Reading and Writing

, Volume 31, Issue 1, pp 185–214 | Cite as

What predicts adult readers’ understanding of STEM texts?

  • D. Jake Follmer
  • Shin-Yi Fang
  • Roy B. Clariana
  • Bonnie J. F. Meyer
  • Ping LiEmail author


The current study examined the relations among key variables that underlie reading comprehension of expository science texts in a diverse population of adult native English readers. Using Mechanical Turk to sample a range of adult readers, the study also examined the effect of text presentation on readers’ comprehension and knowledge structure established after reading. In Study 1, ratings of situational interest, select reading background variables, and select measures of readers’ knowledge structure accounted for significant variance in comprehension. In Study 2, the knowledge structure metrics of primacy, recency, and node degree as well as several text ratings were found to be comparable across text presentation formats. Participants who read the text sentence-by-sentence obtained higher scores on measures of comprehension and provided higher ratings of situational interest than those who received the whole paragraph text at once. Knowledge structure measures for the sentence-by-sentence and paragraph formats were similar (68% overlap). We discuss implications for future research examining factors that underlie the successful comprehension of science texts.


Reading comprehension Expository text Science text STEM Reader characteristics Mechanical turk 



This research was supported by a grant from the National Science Foundation (BCS-1533625). Any opinions expressed in this article are those of the authors and do not necessarily reflect the views of the National Science Foundation.


  1. Afflerbach, P. (1986). The influence of prior knowledge on expert readers’ importance assignment process. In J. A. Niles & R.V. Lalik (Eds.), National reading conference yearbook. Vol. 35: Solving problems in literacy: Learners, teachers and researchers (pp, 30–40). Rochester, NY: National Reading Conference.Google Scholar
  2. Ashby, F. G., Maddox, W. T., & Lee, W. W. (1994). On the dangers of averaging across subjects when using multidimentional scaling or the similarity-choice model. Psychological Science, 5, 144–151.CrossRefGoogle Scholar
  3. Best, R. M., Rowe, M., Ozuru, Y., & McNamara, D. S. (2005). Deep-level comprehension of science texts: The role of the reader and the text. Topics in Language Disorders, 25(1), 65–83.CrossRefGoogle Scholar
  4. Bohn-Gettler, C. M., & Kendeou, P. (2014). The interplay of reader goals, working memory, and text structure during reading. Contemporary Educational Psychology, 39(3), 206–219.CrossRefGoogle Scholar
  5. Borg, I., Groenen, P., & Mair, P. (2013). Applied multidimensional scaling. Heidelberg: Springer.CrossRefGoogle Scholar
  6. Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s mechanical turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1), 3–5.CrossRefGoogle Scholar
  7. Cañas, A. J. (April, 2009). What are Propositions?…from a concept mapping perspective. Available from
  8. Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition. Psychometrika, i5, 283–319.CrossRefGoogle Scholar
  9. Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.CrossRefGoogle Scholar
  10. Chiesi, H. I., Spilich, G. J., & Voss, J. E. (1979). Acquisition of domain related information in relation to high and low domain knowledge. Journal of Verbal Learning and Verbal Behavior, 18, 275–290.CrossRefGoogle Scholar
  11. Clariana, R. B. (2010a). Deriving individual and group knowledge structure from network diagrams and from essays. In Computer-based diagnostics and systematic analysis of knowledge (pp. 117–130). Springer US.Google Scholar
  12. Clariana, R. B. (2010b). Multi-decision approaches for eliciting knowledge structure. In Computer-based diagnostics and systematic analysis of knowledge (pp. 41–59). Springer US.Google Scholar
  13. Clariana, R. B., & Wallace, P. E. (2009). A comparison of pair-wise, list-wise, and clustering approaches for eliciting structural knowledge in information systems courses. International Journal of Instructional Media, 36(3), 287–302.Google Scholar
  14. Clariana, R. B., Wolfe, M. B., & Kim, K. (2014). The influence of narrative and expository text lesson text structures on knowledge structures: Alternate measures of knowledge structure. Educational Technology Research and Development, 62(4), 601–616.CrossRefGoogle Scholar
  15. De Leeuw, J., & Mair, P. (2009). Multidimensional scaling using majorization: SMACOF in R. Journal of Statistical Software, 31, 1–30.Google Scholar
  16. DeLong, K. A., & Kutas, M. (2016). Hemispheric differences and similarities in comprehending more and less predictable sentences. Neuropsychologia, 91, 380–393.CrossRefGoogle Scholar
  17. Fesel, S. S., Segers, E., Clariana, R. B., & Verhoeven, L. (2015). Quality of children’s knowledge representations in digital text comprehension: Evidence from pathfinder networks. Computers in Human Behavior, 48, 135–146.CrossRefGoogle Scholar
  18. Flesch, R. (1948). A new readability yardstick. Journal of Applied Psychology, 32(3), 221–233.CrossRefGoogle Scholar
  19. Follmer, D. J., Sperling, R. A., & Suen, H. K. (2017). The role of MTurk in educational research: Advantages, issues, and future directions. Educational Researcher, 46(6), 329–334. doi: 10.3102/0013189X17725519.CrossRefGoogle Scholar
  20. Gernsbacher, M. A. (1997). Coherence cues mapping during comprehension. In J. Costermans & M. Fayol (Eds.), Processing interclausal relationships in the production and comprehension of text (pp. 3–22). Hillsdale: Erlbaum.Google Scholar
  21. Goldman, S. R., & Bisanz, G. L. (2002). Toward a functional analysis of scientific genres: Implications for understanding and learning processes. In A. León & A. C. Graesser (Eds.), The psychology of science text comprehension (pp. 19–50). Mahwah: L. Erlbaum.Google Scholar
  22. Graesser, A. C., McNamara, D. S., & Kulikowich, J. M. (2011). Coh-Metrix: Providing multilevel analyses of text characteristics. Educational Researcher, 40(5), 223–234.CrossRefGoogle Scholar
  23. Graesser, A. C., McNamara, D. S., Louwerse, M. M., & Cai, Z. (2004). Coh-Metrix: Analysis of text on cohesion and language. Behavior Research Methods, Instruments, & Computers, 36(2), 193–202.CrossRefGoogle Scholar
  24. Graesser, A. C., Singer, M., & Trabasso, T. (1994). Constructing inferences during narrative text comprehension. Psychological Review, 101, 371–395.CrossRefGoogle Scholar
  25. Grimes, J. E. (1975). The thread of discourse. New York: Mouton Publishers.CrossRefGoogle Scholar
  26. Hayes, A. F. (2012). PROCESS: A versatile computational tool for observed variable mediation, moderation, and conditional process modeling [white paper]. Retrieved from
  27. Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.Google Scholar
  28. Hess, T. M. (2005). Memory and aging in context. Psychological Bulletin, 131, 383–406.CrossRefGoogle Scholar
  29. Hidi, S. (1990). Interest and its contribution as a mental resource for learning. Review of Educational Research, 60(4), 549–571. doi: 10.3102/00346543060004549.
  30. Hidi, S., & Baird, W. (1988). Strategies for increasing text-based interest and students' recall of expository texts. Reading Research Quarterly, 23(4), 465–483. doi: 10.2307/747644.
  31. Kendeou, P., & van den Broek, P. (2007). The effects of prior knowledge and text structure on comprehension processes during reading of scientific texts. Memory & Cognition, 35(7), 1567–1577.CrossRefGoogle Scholar
  32. Kintsch, W. (1988). The use of knowledge in discourse processing: A construction integration model. Discourse Processes, 16, 193–202.CrossRefGoogle Scholar
  33. Kobayashi, M. (2004). Reading comprehension assessment: From text perspectives. Scientific Approaches to Language, 3, 129–157.Google Scholar
  34. Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27.CrossRefGoogle Scholar
  35. Kruskal, J. B., & Wish, M. (1978). Multidimensional Scaling. Quantitative Applications in the Social Sciences. Beverly Hills: Sage.CrossRefGoogle Scholar
  36. Li, P., & Clariana, R. (2017). Reading comprehension in L1 and L2: An integrative approach. Journal of Neurolinguistics. (in press)Google Scholar
  37. Loan, F. A. (2009). Impact of new technology on reading habits: A glimpse on the world literature. Role of School Libraries in Quality Education, 212–218.Google Scholar
  38. Lundeberg, M. A. (1987). Metacognitive aspects of reading comprehension: Studying understanding in legal case analysis. Reading Research Quarterly, 22(4), 407–432. doi: 10.2307/747700.
  39. Mashal, N., & Faust, M. (2010). The effects of metaphoricity and presentation style on brain activation during text comprehension. Metaphor and Symbol, 25(1), 19–33.CrossRefGoogle Scholar
  40. McCrudden, M., Schraw, G., Hartley, K., & Kenneth, A. K. (2004). The influence of presentation, organization, and example context on text learning. Journal of Experimental Education, 72(4), 289–306.CrossRefGoogle Scholar
  41. McNamara, D. S., & Kintsch, W. (1996). Learning from texts: Effects of prior knowledge and text coherence. Discourse Processes, 22, 247–288.CrossRefGoogle Scholar
  42. McNamara, D. S., Louwerse, M. M., McCarthy, P. M., & Graesser, A. C. (2010). Coh-Metrix: Capturing linguistic features of cohesion. Discourse Processes, 47, 292–330.CrossRefGoogle Scholar
  43. McNamara, D. S., & Magliano, J. P. (2009). Towards a comprehensive model of comprehension. In B. Ross (Ed.), The psychology of learning and motivation (Vol. 51, pp. 297–384). New York: Elsevier Science.CrossRefGoogle Scholar
  44. Means, M. L., & Voss, J. F. (1985). Star wars: A developmental study of expert and novice knowledge structures. Journal of Memory and Language, 24, 746–757.CrossRefGoogle Scholar
  45. Meyer, B. J. F. (1975). The organization of prose and its effects on memory. Amsterdam: American Elsevier Publication Co.Google Scholar
  46. Meyer, B. J. F., Brandt, D. M., & Bluth, G. J. (1980). Use of the top-level structure in text: Key for reading comprehension of ninth-grade students. Reading Research Quarterly, 16, 72–103.CrossRefGoogle Scholar
  47. Meyer, B. J. F., & Freedle, R. O. (1984). Effects of discourse type on recall. American Educational Research Journal, 21, 121–143.CrossRefGoogle Scholar
  48. Meyer, B. J. F., & Pollard, C. (2009). Applied learning and aging: A closer look at reading comprehension. In J. E. Birren & K. Warner Schaie (Eds.), Handbook of the psychology of aging (6th ed., pp. 233–260). New York: Academic Press.Google Scholar
  49. Meyer, B. J. F., & Poon, L. W. (1997). Age differences in efficiency of reading comprehension from printed versus computer-displayed text. Educational Gerontology, 23, 789–807.CrossRefGoogle Scholar
  50. Meyer, B. J. F., & Poon, L. W. (2001). Effects of structure strategy training and signaling on recall of text. Journal of Educational Psychology, 93, 141–159.CrossRefGoogle Scholar
  51. Meyer, B. J. F., & Rice, G. E. (1989). Prose processing in adulthood: The text, the reader, and the task. In L. W. Poon, D. C. Rubin, & B. A. Wilson (Eds.), Everyday cognition in adulthood and later life (pp. 157–194). New York: Cambridge University Press.CrossRefGoogle Scholar
  52. Meyer, B. J. F., Talbot, A. P., & Florencio, D. (1999). Reading rate and prose retrieval. Scientific Studies of Reading, 3(4), 303–329.CrossRefGoogle Scholar
  53. Moreno, R., & Mayer, R. (1999). Cognitive principles of multimedia design: The role of modality and contiguity. Journal of Educational Psychology, 91, 358–368.CrossRefGoogle Scholar
  54. Olszak, I., & Curie-Sklodowska, M. (2015). The effect of online tools on reading habits among teenage students. Model of chances and dangers. English for Specific Purposes, 45(16), 1–12.Google Scholar
  55. O’Reilly, T., & McNamara, D. S. (2002). What’s a science student to do? In Proceedings of the Annual Meeting of the Cognitive Science Society, 24, 1–6.Google Scholar
  56. Paolacci, G., & Chandler, J. (2014). Inside the Turk: Understanding Mechanical Turk as a participant pool. Current Directions in Psychological Science, 23(3), 184–188.CrossRefGoogle Scholar
  57. Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments on Amazon Mechanical Turk. Judgment and Decision Making, 5(5), 411–419.Google Scholar
  58. Poindexter, M. T., & Clariana, R. B. (2006). The influence of relational and proposition-specific processing on structural knowledge and traditional learning outcomes. International Journal of Instructional Media, 33(2), 177–187.Google Scholar
  59. R Core Team (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  60. Radach, R., Huestegge, L., & Reilly, R. (2008). The role of global top-down factors in local eye-movement control in reading. Psychological Research, 72(6), 675–688. doi: 10.1007/s00426-008-0173-3.
  61. Rapp, D. N., & van den Broek, P. (2005). Dynamic text comprehension an integrative view of reading. Current Directions in Psychological Science, 14(5), 276–279.CrossRefGoogle Scholar
  62. Reinking, D. (1988). Computer-mediated text and comprehension differences: The role of reading time, reader preference, and estimation of learning. Reading Research Quarterly, 23(4), 484–498.CrossRefGoogle Scholar
  63. Reyna, V. F., & Brainerd, C. J. (1995). Fuzzy-trace theory: An interim synthesis. Learning and Individual Differences, 7, 1–75.CrossRefGoogle Scholar
  64. Schraw, G., Bruning, R., & Svoboda, C. (1995). Sources of situational interest. Journal of Literacy Research, 27(1), 1–17.Google Scholar
  65. Schraw, G., & Lehman, S. (2001). Situational interest: A review of the literature and directions for future research. Educational Psychology Review, 13(1), 23–52.CrossRefGoogle Scholar
  66. Spilich, G. J. (1983). Life-span characteristics of text processing: Structural and procedural differences. Journal of Verbal Learning and Verbal Behavior, 22, 231–244.CrossRefGoogle Scholar
  67. Stine, E. L. (1990). On-line processing of written text by younger and older adults. Psychology and Aging, 5(1), 68–78.CrossRefGoogle Scholar
  68. Stine-Morrow, E. A., Miller, L. M. S., & Hertzog, C. (2006). Aging and self-regulated language processing. Psychological Bulletin, 132(4), 582–606.CrossRefGoogle Scholar
  69. Swett, K., Miller, A. C., Burns, S., Hoeft, F., Davis, N., Petrill, S. A., et al. (2013). Comprehending expository texts: The dynamic neurobiological correlates of building a coherent text representation. Frontiers in Psychology, 7(853), 1–14. doi: 10.3389/fnhum.2013.00853.Google Scholar
  70. van den Broek, P. (2010). Using texts in science education: Cognitive processes and knowledge representation. Science, 328(5977), 453–456.CrossRefGoogle Scholar
  71. Zhou, W., Wang, X., Xia, Z., Bi, Y., Li, P., & Shu, H. (2016). Neural mechanisms of dorsal and ventral visual regions during text reading. Frontiers in Psychology, 7(1399), 1–10. doi: 10.3389/fpsyg.2016.01399.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • D. Jake Follmer
    • 1
  • Shin-Yi Fang
    • 2
  • Roy B. Clariana
    • 3
  • Bonnie J. F. Meyer
    • 4
  • Ping Li
    • 2
    Email author
  1. 1.School of EducationSalisbury UniversitySalisburyUSA
  2. 2.Department of PsychologyThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Learning and Performance SystemsThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.Department of Educational Psychology, Counseling, and Special EducationThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations