Reading and Writing

, Volume 32, Issue 1, pp 115–146 | Cite as

Effects of orthographic consistency and word length on the dynamics of written production in adults: psycholinguistic and rTMS experiments

  • Samuel PlantonEmail author
  • Mélanie Jucla
  • Jean-François Démonet
  • Christiane Soum-Favaro


Recent studies on written word production aim at studying how information is transmitted between central (linguistic) and peripheral (motor) processes. Neurocognitive models propose that the interface between both types of processes would rely on a frontal writing center (i.e. the GMFA or “Exner’s area”). However there is still debate (1) whether those “levels” are processed in a serial or a cascaded/parallel way and (2) about the nature of the contribution of the GMFA. In Experiment 1, we evaluated the interaction between length and orthographic consistency effects in a writing-to-dictation task. We observed consistency effects on latencies and writing speed depending on the position in the word of the inconsistent segment. In Experiment 2, 16 participants underwent a writing-to-dictation task, manipulating length and regularity effect, after inhibitory rTMS. We observed an increase of latencies restricted to long and irregular words. Those results are consistent with a cascaded view of writing and suggest a more complex role of GMFA than initially expected.


Written word production Handwriting Orthographic consistency Graphemic motor frontal area Transcranial magnetic stimulation 


  1. Alamargot, D., Chesnet, D., Dansac, C., & Ros, C. (2006). Eye and pen: A new device for studying reading during writing. Behavior Research Methods, 38, 287–299.CrossRefGoogle Scholar
  2. Alexander, M. P., Fischer, R. S., & Friedman, R. (1992). Lesion localization in apractic agraphia. Archives of Neurology, 49, 246–251.CrossRefGoogle Scholar
  3. Álvarez, C. J., Cottrell, D., & Afonso, O. (2009). Writing dictated words and picture names: Syllabic boundaries affect execution in Spanish. Applied Psycholinguistics, 30, 205–223.CrossRefGoogle Scholar
  4. Baayen, R. H. (2011). languageR: Data sets and functions with "Analyzing Linguistic Data: A practical introduction to statistics". R package version 1.
  5. Baayen, R. H., & Milin, P. (2010). Analyzing reaction times. International Journal of Psychological Research, 3, 12–28.CrossRefGoogle Scholar
  6. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48.CrossRefGoogle Scholar
  7. Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C., & Frahm, J. (2005). BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. NeuroImage, 28, 22–29.CrossRefGoogle Scholar
  8. Bestmann, S., Swayne, O., Blankenburg, F., Ruff, C. C., Haggard, P., Weiskopf, N., et al. (2008). Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cerebral Cortex, 18, 1281–1291.CrossRefGoogle Scholar
  9. Bonin, P., Collay, S., & Fayol, M. (2008). La consistance orthographique en production verbale écrite: Une brève synthèse. L’Année Psychologique, 108, 517–546.CrossRefGoogle Scholar
  10. Bonin, P., Collay, S., Fayol, M., & Méot, A. (2005). Attentional strategic control over nonlexical and lexical processing in written spelling to dictation in adults. Memory & Cognition, 33, 59–75.CrossRefGoogle Scholar
  11. Bonin, P., Fayol, M., & Chalard, M. (2001a). Age of acquisition and word frequency in written picture naming. Quarterly Journal of Experimental Psychology A, 54, 469–489.CrossRefGoogle Scholar
  12. Bonin, P., & Méot, A. (2002). Writing to dictation in real time in adults: What are the determinants of written latencies? In S. P. Shohov (Ed.), Advances in psychology research (pp. 139–165). New York: Nova Science Publishers.Google Scholar
  13. Bonin, P., Peereman, R., & Fayol, M. (2001b). Do phonological codes constrain the selection of orthographic codes in written picture naming? Journal of Memory and Language, 45, 688–720.CrossRefGoogle Scholar
  14. Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-B. (2002). Region of interest analysis using an SPM toolbox. Paper presented at the 8th International Conference on Functional Mapping of the Human Brain. Sendai, Japan.Google Scholar
  15. Caramazza, A., Miceli, G., Villa, G., & Romani, C. (1987). The role of the graphemic buffer in spelling: Evidence from a case of acquired dysgraphia. Cognition, 26, 59–85.CrossRefGoogle Scholar
  16. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1, 42–45.CrossRefGoogle Scholar
  17. Damian, M. F. (2003). Articulatory duration in single-word speech production. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29, 416–431.CrossRefGoogle Scholar
  18. Damian, M. F., & Stadthagen-Gonzalez, H. (2009). Advance planning of form properties in the written production of single and multiple words. Language and Cognitive Processes, 24, 555–579.CrossRefGoogle Scholar
  19. Delattre, M., Bonin, P., & Barry, C. (2006). Written spelling to dictation: Sound-to-spelling regularity affects both writing latencies and durations. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32, 1330–1340.CrossRefGoogle Scholar
  20. Ellis, A. W. (1982). Spelling and writing (and reading and speaking). In A. W. Ellis (Ed.), Normality and pathology in cognitive functions (pp. 113–146). London: Academic Press.Google Scholar
  21. Exner, S. (1881). Untersuchungen über die Lokalisation der Funktionen in der Grosshirnrinde des Menschen. Vienna: Braumüller.Google Scholar
  22. Folk, J. R., Rapp, B., & Goldrick, M. (2002). The interaction of lexical and sublexical information in spelling: What’s the point? Cognitive Neuropsychology, 19, 653–671.CrossRefGoogle Scholar
  23. Georgopoulos, A. P., Ashe, J., Smyrnis, N., & Taira, M. (1992). The motor cortex and the coding of force. Science, 256, 1692–1695.CrossRefGoogle Scholar
  24. Hillis, A. E., & Caramazza, A. (1989). The graphemic buffer and attentional mechanisms. Brain and Language, 36, 208–235.CrossRefGoogle Scholar
  25. Jones, A. C., Folk, J. R., & Rapp, B. (2009). All letters are not equal: Subgraphemic texture in orthographic working memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35, 1389–1402.CrossRefGoogle Scholar
  26. Kandel, S., Alvarez, C. J., & Vallée, N. (2006). Syllables as processing units in handwriting production. Journal of Experimental Psychology: Human Perception and Performance, 32, 18–31.Google Scholar
  27. Kandel, S., Hérault, L., Grosjacques, G., Lambert, E., & Fayol, M. (2009). Orthographic vs. phonologic syllables in handwriting production. Cognition, 110, 440–444.CrossRefGoogle Scholar
  28. Kandel, S., & Spinelli, E. (2010). Processing complex graphemes in handwriting production. Memory & Cognition, 38, 762–770.CrossRefGoogle Scholar
  29. Katanoda, K., Yoshikawa, K., & Sugishita, M. (2001). A functional MRI study on the neural substrates for writing. Human Brain Mapping, 13, 34–42.CrossRefGoogle Scholar
  30. Kello, C. T., Plaut, D. C., & MacWhinney, B. (2000). The task dependence of staged versus cascaded processing: An empirical and computational study of Stroop interference in speech production. Journal of Experimental Psychology: General, 129, 340–360.CrossRefGoogle Scholar
  31. Lambert, E., Kandel, S., Fayol, M., & Esperet, E. (2008). The effect of the number of syllables on handwriting production. Reading and Writing, 21, 859–883.CrossRefGoogle Scholar
  32. Lecours, A. R. (1996). Langage écrit: Histoire, théorie et maladie. Isbergues: Ortho Edition.Google Scholar
  33. Lefaucheur, J.-P., André-Obadia, N., Poulet, E., Devanne, H., Haffen, E., Londero, A., et al. (2011). Recommandations françaises sur l’utilisation de la stimulation magnétique transcrânienne répétitive (rTMS): Règles de sécurité et indications thérapeutiques. Neurophysiologie Clinique/Clinical Neurophysiology, 41, 221–295.CrossRefGoogle Scholar
  34. Lubrano, V., Roux, F. E., & Demonet, J. F. (2004). Writing-specific sites in frontal areas: A cortical stimulation study. Journal of Neurosurgery, 101, 787–798.CrossRefGoogle Scholar
  35. Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The neighborhood activation model. Ear and Hearing, 19, 1–36.CrossRefGoogle Scholar
  36. Margolin, D. I. (1984). The neuropsychology of writing and spelling: Semantic, phonological, motor, and perceptual processes. The Quarterly Journal of Experimental Psychology: A, Human Experimental Psychology, 36, 459–489.CrossRefGoogle Scholar
  37. McMillan, C. T., & Corley, M. (2010). Cascading influences on the production of speech: Evidence from articulation. Cognition, 117, 243–260.CrossRefGoogle Scholar
  38. Meyer, A. S., Roelofs, A., & Levelt, W. J. M. (2003). Word length effects in object naming: The role of a response criterion. Journal of Memory and Language, 48, 131–147.CrossRefGoogle Scholar
  39. New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new French lexical database. Behavior Research Methods, Instruments, & Computers, 36, 516–524.CrossRefGoogle Scholar
  40. Pascual-Leone, A. (1999). Transcranial magnetic stimulation: Studying the brain–behaviour relationship by induction of ‘virtual lesions’. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 354, 1229–1238.CrossRefGoogle Scholar
  41. Peereman, R., & Bonin, P. (1998). Is perception a two-way street? The case of feedback consistency in visual word recognition. Journal of Memory and Language, 39, 151–174.CrossRefGoogle Scholar
  42. Peereman, R., & Content, A. (1999). LEXOP: A lexical database providing orthography-phonology statistics for French monosyllabic words. Behavior Research Methods, Instruments, & Computers, 31, 376–379.CrossRefGoogle Scholar
  43. Perry, C., & Ziegler, J. C. (2004). Beyond the two-strategy model of skilled spelling: Effects of consistency, grain size, and orthographic redundancy. The Quarterly Journal of Experimental Psychology: A, Human Experimental Psychology, 57, 325–356.CrossRefGoogle Scholar
  44. Planton, S., Jucla, M., Roux, F. E., & Demonet, J.-F. (2013). The “handwriting brain”: A meta-analysis of neuroimaging studies of motor versus orthographic processes. Cortex, 49, 2772–2787.CrossRefGoogle Scholar
  45. Planton, S., Longcamp, M., Péran, P., Démonet, J.-F., & Jucla, M. (2017). How specialized are writing-specific brain regions? An fMRI study of writing, drawing and oral spelling. Cortex, 88, 66–80.CrossRefGoogle Scholar
  46. Posteraro, L., Zinelli, P., & Mazzucchi, A. (1988). Selective impairment of the graphemic buffer in acquired dysgraphia—A case-study. Brain and Language, 35, 274–286.CrossRefGoogle Scholar
  47. Purcell, J. J., Turkeltaub, P. E., Eden, G. F., & Rapp, B. (2011). Examining the central and peripheral processes of written word production through meta-analysis. Frontiers in Psychology, 2, 239.CrossRefGoogle Scholar
  48. R Development Core Team. (2009). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  49. Randhawa, B. K., Farley, B. G., & Boyd, L. A. (2013). Repetitive transcranial magnetic stimulation improves handwriting in Parkinson’s disease. Parkinson’s Disease, 2013, 751925.Google Scholar
  50. Rapp, B., & Dufor, O. (2011). The neurotopography of written word production: An FMRI investigation of the distribution of sensitivity to length and frequency. Journal of Cognitive Neuroscience, 23, 4067–4081.CrossRefGoogle Scholar
  51. Rapp, B., Epstein, C., & Tainturier, M.-J. (2002). The integration of information across lexical and sublexical processes in spelling. Cognitive Neuropsychology, 19, 1–29.CrossRefGoogle Scholar
  52. Rapp, B., Purcell, J., Hillis, A. E., Capasso, R., & Miceli, G. (2016). Neural bases of orthographic long-term memory and working memory in dysgraphia. Brain, 139, 588–604.CrossRefGoogle Scholar
  53. Roeltgen, D. P. (2003). Agraphia. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (pp. 126–145). Oxford: Oxford University Press.Google Scholar
  54. Roux, S., & Bonin, P. (2009). Neighborhood effects in spelling in adults. Psychonomic Bulletin & Review, 16, 369–373.CrossRefGoogle Scholar
  55. Roux, F.-E., Dufor, O., Giussani, C., Wamain, Y., Draper, L., Longcamp, M., et al. (2009). The graphemic/motor frontal area Exner’s area revisited. Annals of Neurology, 66, 537–545.CrossRefGoogle Scholar
  56. Roux, S., McKeeff, T. J., Grosjacques, G., Afonso, O., & Kandel, S. (2013). The interaction between central and peripheral processes in handwriting production. Cognition, 127, 235–241.CrossRefGoogle Scholar
  57. Soum, C. (1997). L’apprentissage de l’écriture; Contraintes orthographiques & contraintes phonologiques (Doctoral dissertation). Toulouse: Université de Toulouse.Google Scholar
  58. Sugihara, G., Kaminaga, T., & Sugishita, M. (2006). Interindividual uniformity and variety of the “writing center”: A functional MRI study. NeuroImage, 32, 1837–1849.CrossRefGoogle Scholar
  59. Tohgi, H., Saitoh, K., Takahashi, S., Takahashi, H., Utsugisawa, K., Yonezawa, H., et al. (1995). Agraphia and acalculia after a left prefrontal (F1, F2) infarction. Journal of Neurology, Neurosurgery and Psychiatry, 58, 629–632.CrossRefGoogle Scholar
  60. Vallée, N., & Rousset, I. (2004). Indices en typologie des structures lexicales et syllabiques pour la discrimination et l’identification des langues. In Identification des langues et des variétés dialectales par les humains et par les machines: Proceedings of the MIDL workshop (pp. 37–42). Paris.Google Scholar
  61. van Drempt, N., McCluskey, A., & Lannin, N. A. (2011). A review of factors that influence adult handwriting performance. Australian Occupational Therapy Journal, 58, 321–328.CrossRefGoogle Scholar
  62. Van Galen, G. P. (1990). Phonological and motoric demands in handwriting: Evidence for discrete transmission of information. Acta Psychologica, 74, 259–275.CrossRefGoogle Scholar
  63. Van Galen, G. P. (1991). Handwriting: Issues for a psychomotor theory. Human Movement Science, 10, 165–191.CrossRefGoogle Scholar
  64. Van Galen, G. P., Smyth, M. M., Meulenbroek, R. G. J., & Hylkema, H. (1989). The role of short-term memory and the motor buffer in handwriting under visual and nonvisual guidance. In R. Plamondon, C. Y. Suen & M. L. Simner (Eds.), Computer recognition and human production of handwriting (pp. 253–271). Singapore: World Scientific.Google Scholar
  65. Varnava, A., Stokes, M. G., & Chambers, C. D. (2011). Reliability of the ‘observation of movement’ method for determining motor threshold using transcranial magnetic stimulation. Journal of Neuroscience Methods, 201, 327–332.CrossRefGoogle Scholar
  66. Vidaković, M. R., Gabelica, D., Vujović, I., Šoda, J., Batarelo, N., Džimbeg, A., et al. (2015). A novel approach for monitoring writing interferences during navigated transcranial magnetic stimulation mappings of writing related cortical areas. Journal of Neuroscience Methods, 255, 139–150.CrossRefGoogle Scholar
  67. Wann, J., & Nimmo-Smith, I. (1991). The control of pen pressure in handwriting: A subtle point. Human Movement Science, 10, 223–246.CrossRefGoogle Scholar
  68. Wassermann, E. M. (1998). Risk and safety of repetitive transcranial magnetic stimulation: Report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalography and Clinical Neurophysiology, 108, 1–16.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Imagerie Cérébrale et Handicaps Neurologiques UMRS 825INSERMToulouseFrance
  2. 2.Imagerie Cérébrale et Handicaps Neurologiques UMRS 825CHU Purpan, Université de Toulouse, UPSToulouseFrance
  3. 3.URI Octogone-Lordat (EA 4156)Université Toulouse II Jean JaurèsToulouseFrance
  4. 4.CNRS, LPL (UMR 7309)Aix Marseille UnivAix-en-Provence Cedex 1France
  5. 5.Centre Leenaards de la MémoireCHUV and Université de LausanneLausanneSwitzerland

Personalised recommendations