Skip to main content
Log in

Modified Friedman isoconversional kinetic method for effective activation energies of waste tires rubber pyrolysis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A modified Friedman isoconversional method based on the weight-loss data was proposed to determine the kinetics models and parameters. Thermal pyrolysis kinetic characteristics of waste tire rubber (WTR) samples under nitrogen conditions was investigated by measuring the rate of mass loss as a function of time and temperature. The obtained thermal pyrolysis data was applied to analyze the kinetic parameters using the Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS) and modified Friedman isoconversional methods. The results showed that the modified Friedman isoconversional method was used to provide the most precise values of activation energy for WTR pyrolysis, which ranged from 130.5 to 177.6 kJ/mol with the conversion range of 0.1–0.9. It can avoid systematic errors in the FWO and KAS methods. These data were in good agreement with the values reported in the related previous studies. Therefore, the modified Friedman method provides an accurate and effective way to explain the pyrolysis parameters and equations of kinetics in WTR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

There is no data statement.

References

  1. Chen B, Zheng D, Xu R (2022) Disposal methods for used passenger car tires: one of the fastest growing solid wastes in China. Green Energy Environ 7(6):1298–1309. https://doi.org/10.1016/j.gee.2021.02.003

    Article  CAS  Google Scholar 

  2. Gu Q, Wu W, Jin B (2019) Investigation of thermal characteristics of municipal solid waste incineration fly ash under various atmospheres: a TG-FTIR study. Thermochim Acta 681:178402–217840. https://doi.org/10.1016/j.tca.2019.178402

    Article  CAS  Google Scholar 

  3. Seidelt S, Müller-Hagedorn M, Bockhorn H (2006) Description of tire pyrolysis by thermal degradation behaviour of main components. J Anal Appl Pyrol 75(1):11–18. https://doi.org/10.1016/j.jaap.2005.03.002

    Article  CAS  Google Scholar 

  4. Labaki M, Jeguirim M (2017) Thermochemical conversion of waste tyres—a review. Environ Sci Pollut Res Int 24(11):9962–9992. https://doi.org/10.1007/s11356-016-7780-0

    Article  CAS  PubMed  Google Scholar 

  5. Venkatesh M, Ravi P, Tewari SP (2013) Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn-Wall-Ozawa method. J Phys Chem A 117(40):10162–10169. https://doi.org/10.1021/jp407526r

    Article  CAS  PubMed  Google Scholar 

  6. Danon B, Görgens J (2015) Determining rubber composition of waste tyres using devolatilisation kinetics. Thermochim Acta 621:56–60. https://doi.org/10.1016/j.tca.2015.10.008

    Article  CAS  Google Scholar 

  7. Rowhani A, Rainey T (2016) Scrap Tyre management pathways and their use as a fuel—a review. Energies 9(11):888–1014. https://doi.org/10.3390/en9110888

    Article  CAS  Google Scholar 

  8. Frigo S, Seggiani M, Puccini M, Vitolo S (2014) Liquid fuel production from waste tyre pyrolysis and its utilisation in a diesel engine. Fuel 116:399–408. https://doi.org/10.1016/j.fuel.2013.08.044

    Article  CAS  Google Scholar 

  9. Azam M, Ashraf A, Jahromy S, Raza W, Khalid H, Raza N, Winter F (2020) Isoconversional nonisothermal kinetic analysis of municipal solid waste, refuse-derived fuel, and coal. Energy Sci Eng 8(10):3728–3739. https://doi.org/10.1002/ese3.778

    Article  CAS  Google Scholar 

  10. Han J, LiW LD, Qin L, Chen W, Xing F (2018) Pyrolysis characteristic and mechanism of waste tyre: a thermogravimetry-mass spectrometry analysis. J Anal Appl Pyrol 129:1–5. https://doi.org/10.1016/j.jaap.2017.12.016

    Article  CAS  Google Scholar 

  11. Miskolczi N, Nagy R (2012) Hydrocarbons obtained by waste plastic pyrolysis: comparative analysis of decomposition described by different kinetic models. Fuel Process Technol 104:96–104. https://doi.org/10.1016/j.fuproc.2012.04.031

    Article  CAS  Google Scholar 

  12. Luo L, Guo X, Zhang Z et al (2018) Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk—ScienceDirect. Renew Sustain Energy Rev 82(3):2705–2715. https://doi.org/10.1016/j.rser.2017.09.113

    Article  CAS  Google Scholar 

  13. Kim D, Zhou K, Park S, Kwon Y, Lee S (2017) Single particle tracking-based reaction progress kinetic analysis reveals a series of molecular mechanisms of cetuximab-induced EGFR processes in a single living cell. Chem Sci 8(7):4823–4832. https://doi.org/10.1039/C7SC01159H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hooshmand A, Zandi-Atashbar N (2014) Fuel production based on catalytic pyrolysis of waste tires as an optimized model. Energ Convers Manage 87:653–669. https://doi.org/10.1016/j.enconman.2014.07.033

    Article  CAS  Google Scholar 

  15. Tan G, Tang D, Mu T, Xu C, Wang D, Wang Q (2014) The validity of nonlinear isoconversional method in the kinetic analysis of calcium carbonate decomposition under isothermal and non-isothermal conditions. Thermochim Acta 585:21–24. https://doi.org/10.1016/j.tca.2014.03.041

    Article  CAS  Google Scholar 

  16. Aboulkas A, El Harfi K, El Bouadili A (2010) Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energ Convers Manage 51(7):1363–1369. https://doi.org/10.1016/j.enconman.2009.12.017

    Article  CAS  Google Scholar 

  17. Muhammad I, Rao A, Hammad H, Muhammad Y, Shazia S, Hassan A, Saifur R, Muhammad U (2023) Statistical prediction and sensitivity analysis of kinetic rate constants for efficient thermal valorization of plastic waste into combustible oil and gases. Heliyon 9(5):e16049. https://doi.org/10.1016/j.heliyon.2023.e16049

    Article  CAS  Google Scholar 

  18. Nabi R, Hussain H, Naz M, Shukrullah H, Khawaja H (2023) Sensitivity analysis of thermal degradation of plastic waste using statistically assumed exponential factors and activation energies. ACS Omega 8(15):14122–14130. https://doi.org/10.1021/acsomega.3c00801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu G, Ma X, Yu Z (2009) Experimental and kinetic modeling of oxygen-enriched air combustion of municipal solid waste. Waste Manag 29(2):792–796. https://doi.org/10.1016/j.wasman.2008.06.010

    Article  CAS  PubMed  Google Scholar 

  20. Cai J, Chen S (2009) A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree. J Comput Chem 30(13):1986–1991. https://doi.org/10.1002/jcc.21195

    Article  CAS  PubMed  Google Scholar 

  21. Wey M, Liou B, Wu S, Zhang C (2012) The autothermal pyrolysis of waste tires. J Air Waste Manag 45(11):855–863. https://doi.org/10.1080/10473289.1995.10467415

    Article  Google Scholar 

  22. Burnham A, Dinh L (2007) A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim 89:479–490. https://doi.org/10.1007/s10973-006-8486-1

    Article  CAS  Google Scholar 

  23. Budrugeac P (2019) Comparison between model-based and non-isothermal model-free computational procedures for prediction of conversion-time curves of calcium carbonate decomposition. Thermochim Acta 679:178322–178333. https://doi.org/10.1016/j.tca.2019.178322

    Article  CAS  Google Scholar 

  24. Zangaro G, Carvalho A, Ekawa B, do Nascimento A, Nunes W, Fernandes R, Parkes G, Ashton G, Ionashiro M, Caires F (2019) Study of the thermal behavior in oxidative and pyrolysis conditions of some transition metals complexes with Lornoxicam as ligand using the techniques: TG-DSC, DSC, HSM and EGA (TG-FTIR and HSM-MS). Thermochim Acta 681:178399–178410. https://doi.org/10.1016/j.tca.2019.178399

    Article  CAS  Google Scholar 

  25. Ferreira R, Meireles C, Assunção R, Barrozo M, Soares R (2020) Optimization of the oxidative fast pyrolysis process of sugarcane straw by TGA and DSC analyses. Biomass Bioenerg 134:105456–105463. https://doi.org/10.1016/j.biombioe.2019.105456

    Article  CAS  Google Scholar 

  26. Vyazovkin S, Burnham AK, Criado J, Pérez-Maqueda L, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1–2):1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  CAS  Google Scholar 

  27. Bai F, Guo W, Lü X, Liu Y, Guo M, Li Q, Sun Y (2015) Kinetic study on the pyrolysis behavior of Huadian oil shale via non-isothermal thermogravimetric data. Fuel 146:111–118. https://doi.org/10.1016/j.fuel.2014.12.073

    Article  CAS  Google Scholar 

  28. Qu Y, Li A, Wang D, Zhang L, Ji G (2019) Kinetic study of the effect of in-situ mineral solids on pyrolysis process of oil sludge. Chem Eng J 374:338–346. https://doi.org/10.1016/j.cej.2019.05.183

    Article  CAS  Google Scholar 

  29. Mishra G, Bhaskar T (2014) Non isothermal model free kinetics for pyrolysis of rice straw. Bioresour Technol 169:614–621. https://doi.org/10.1016/j.biortech.2014.07.045

    Article  CAS  PubMed  Google Scholar 

  30. Vincent L, Mija A, Sbirrazzuoli N (2007) Liquid crystalline and isotropic epoxy thermosets: mechanism and kinetics of non-isothermal degradation. Polym Degrad Stabil 92(11):2051–2057. https://doi.org/10.1016/j.polymdegradstab.2007.07.015

    Article  CAS  Google Scholar 

  31. Buah WK, Cunliffe AM, Williams PT (2007) Characterization of products from the pyrolysis of municipal solid waste. Process Saf Environ 85(5):450–457. https://doi.org/10.1205/psep07024

    Article  CAS  Google Scholar 

  32. Sbirrazzuoli N, Vincent L, Mija A, Guigo N (2009) Integral, differential and advanced isoconversional methods. Chemomet Intell Lab 96(2):219–226. https://doi.org/10.1016/j.chemolab.2009.02.002

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Comm 27(18):1515–1532. https://doi.org/10.1002/marc.200600404

    Article  CAS  Google Scholar 

  34. Vyazovkin S, Sbirrazzuoli N, Dranca I (2006) Variation in activation energy of the glass transition for polymers of different dynamic fragility. Macromolecul Chem Phys 207(13):1126–1130. https://doi.org/10.1002/macp.200600095

    Article  CAS  Google Scholar 

  35. Kumar S, Krishnamurthy N (2012) Variation of activation energy of hydrogen absorption of vanadium as a function of aluminum. Int J Hydrogen Energ 37(18):13429–13436. https://doi.org/10.1016/j.ijhydene.2012.06.115

    Article  CAS  Google Scholar 

  36. Vyazovkin S, Dollimore D (1996) Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci 36(1):42–45. https://doi.org/10.1021/ci950062m

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by Shanghai Municipal Commission of Science and Technology (No. 23YF1442200) and China Postdoctoral Science Foundation (No. 2023M732329), and the authors also would like to acknowledge manuscript revision by Yuqiong Li.

Funding

Funding was provided by Natural Science Foundation of Shanghai Municipal Science and Technology Commission (No. 23YF1442200) and Postdoctoral Research Foundation of China (Certificate Number 2023M732329).

Author information

Authors and Affiliations

Authors

Contributions

Zhen Zhang: Conceptualization, Methodology, Experiments, Test result analysis, Manuscript drafting, Manuscript revision and editing. Xiaoguang Zheng: Test result analysis, Manuscript revision and editing. Junmeng Cai: Conceptualization, Methodology, Test result analysis, Manuscript revision and editing.

Corresponding author

Correspondence to Zhen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zheng, X. & Cai, J. Modified Friedman isoconversional kinetic method for effective activation energies of waste tires rubber pyrolysis. Reac Kinet Mech Cat (2024). https://doi.org/10.1007/s11144-024-02629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11144-024-02629-7

Keywords

Navigation