Skip to main content
Log in

Kinetic and isothermal studies of naproxen adsorption from aqueous solutions using walnut shell biochar

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, biochar was obtained from walnut shells (WS) using one- and two-stage pyrolysis processes at different temperatures (500, 600, 700, 700 + 700 °C). The biochar obtained was used as an adsorbent for the removal of naproxen, an organic pollutant, from aquatic systems. The highest removal efficiency was obtained with 700 + 700-WSB obtained by the two-stage pyrolysis method. The physicochemical properties of walnut shell biochar (WSB) were investigated using SEM–EDX, FTIR, XRD, BET, elemental analysis, and TGA. 700 + 700-WSB had a high surface area of 649 m2/g and a pronounced porous structure, according to the BET and SEM analysis results. Various experimental parameters (pH, contact time, amount of adsorbent, temperature, initial concentration, and pHpzc) were investigated to study the adsorption of naproxen by 700 + 700-WSB in an aqueous solution. The point of zero charge of the 700 + 700-WSB adsorbent was calculated as 7.15. The 700 + 700-WSB obtained at optimum parameter levels, such as 25 °C and 4 h time has an adsorption capacity of 58.8 mg/g. To analyze the equilibrium results, the Langmuir, Sips, Freundlich, and Temkin adsorption isotherm models were utilized. The equilibrium data fit the Langmuir (R2 = 0.984) and Sips (R2 = 0.979) models among the isotherm models. Investigating the adsorption characteristics of naproxen on WSB involved the study of the kinetic models and thermodynamic components of the adsorption process. The psuedo-second order kinetic model (PSO) was shown to be consistent with the experimental data through kinetic investigations, and the thermodynamic results (ΔG° =  − 21.87 kJ/mol, ΔH° =  − 29.52 kJ/mol and ΔSº =  − 25.73 J/mol K) indicated that the adsorption process was exothermic and spontaneous.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Tu N, Liu Y, Li R, Lv W, Liu G, Ma D (2019) Experimental and theoretical investigation on photodegradation mechanisms of naproxen and its photoproducts. Chemosphere 227:142–150. https://doi.org/10.1016/j.chemosphere.2019.04.055

    Article  CAS  PubMed  Google Scholar 

  2. Wieszczycka K, Zembrzuska J, Bornikowska J, Wojciechowska A, Wojciechowska I (2017) Removal of naproxen from water by ionicliquid-modified polymer sorbents. Chem Eng Res Des 117:698–705. https://doi.org/10.1016/j.cherd.2016.11.024

    Article  CAS  Google Scholar 

  3. Afkhami A, Kafrashi F, Ahmadi M, Madrakian T (2015) A new chiral electrochemical sensor for the enantioselective recognition of naproxen enantiomers using L-cysteine self-assembled over gold nanoparticles at gold electrode. RSC Adv 5:58609–58615. https://doi.org/10.1039/C5RA07396K

    Article  CAS  Google Scholar 

  4. Madikizela LM, Chimuka L (2016) Synthesis, adsorption and selectivity studies of a polymer imprinted with naproxen, ibuprofen and diclofenac. J Environ Chem Eng 4:4029–4037. https://doi.org/10.1016/j.jece.2016.09.012

    Article  CAS  Google Scholar 

  5. Vulava VM, Cory WC, Murphey VL, Ulmer CZ (2016) Sorption, photodegradation, and chemical transformation of naproxen and ibuprofen in soils and water. Sci Total Environ 565:1063–1070. https://doi.org/10.1016/j.scitotenv.2016.05.132

    Article  CAS  PubMed  Google Scholar 

  6. Nodeh MKM, Kanani N, Abadi EB, Sereshti H, Barghi A, Rezania S, Bidhendi GN (2021) Equilibrium and kinetics studies of naproxen adsorption onto novel magnetic graphene oxide functionalized with hybrid glycidoxy-amino propyl silane. Environ Chall 4:100106. https://doi.org/10.1016/j.envc.2021.100106

    Article  CAS  Google Scholar 

  7. Xing L, Haddao KM, Emami N, Nalchifard F, Hussain W, Jasem H, Dawood AH, Toghraie D, Hekmatifar M (2022) Fabrication of HKUST-1/ZnO/SA nanocomposite for doxycycline and naproxen adsorption from contaminated water. Sustain Chem Pharm 29:100757. https://doi.org/10.1016/j.scp.2022.100757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Organization, W.H. (2012) Pharmaceuticals in Drinking-Water. https://apps.who.int/iris/handle/10665/44630

  9. Kurtulbaş E, Bilgin M, Şahin S, Bayazit ŞS (2017) Comparison of different polymeric resins for naproxen removal from wastewater. J Mol Liq 241:633–637. https://doi.org/10.1016/j.molliq.2017.06.070

    Article  CAS  Google Scholar 

  10. Czech B, Kończak M, Rakowska M, Oleszczuk P (2021) Engineered biochars from organic wastes for the adsorption of diclofenac, naproxen and triclosan from water systems. J Clean Prod 288:125686. https://doi.org/10.1016/j.jclepro.2020.125686

    Article  CAS  Google Scholar 

  11. Al-Qaim FF, Mussa ZH, Yuzir A, Abdullah MP, Othman MR (2018) Removal of pharmaceutically active compounds from wastewater using adsorption coupled with electrochemical oxidation technology: a critical review. J Braz Chem Soc 29:1721–1731. https://doi.org/10.21577/0103-5053.20180047

    Article  CAS  Google Scholar 

  12. Matin A, Jillani SMS, Baig U, Ihsanullah I, Alhooshani K (2023) Removal of pharmaceutically active compounds from water sources using nanofiltration and reverse osmosis membranes: comparison of removal efficiencies and in-depth analysis of rejection mechanisms. J Environ Manage 338:117682. https://doi.org/10.1016/j.jenvman.2023.117682

    Article  CAS  PubMed  Google Scholar 

  13. Shirafkan A, Nowee SM, Ramezanian N, Etemadi MM (2016) Hybrid coagulation/ozonation treatment of pharmaceutical wastewater using ferric chloride, polyaluminum chloride and ozone. Int J Environ Sci Technol 13:1443–1452. https://doi.org/10.1007/s13762-016-0965-8

    Article  CAS  Google Scholar 

  14. Muniozguren PA, Galvis EAS, Bussemaker M, Palma RAT, Lee J (2021) A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason Sonochem 76:105656. https://doi.org/10.1016/j.ultsonch.2021.105656

    Article  CAS  Google Scholar 

  15. Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12:27–47. https://doi.org/10.1007/s10311-013-0428-0

    Article  CAS  Google Scholar 

  16. Bambague EMJ, Arias DSV, Vanegas ODR, Gómez DDG, Parra CAM, Salamanca EJP, Filho CRM, Martínez FM (2023) Removal of pharmaceutical compounds from real urban wastewater by a continuous bio-electrochemical process at pilot scale. J Environ Chem Eng 11:110130. https://doi.org/10.1016/j.jece.2023.110130

    Article  CAS  Google Scholar 

  17. Chen W, Xu J, Lu S, Jiao W, Wu L, Chang AC (2013) Fates and transport of PPCPs in soil receiving reclaimed water irrigation. Chemosphere 93:2621–2630. https://doi.org/10.1016/j.chemosphere.2013.09.088

    Article  CAS  PubMed  Google Scholar 

  18. Qin Z, Liu S, Liang SX, Kang Q, Wang J, Zhao C (2016) Advanced treatment of pharmaceutical wastewater with combined micro-electrolysis, fenton oxidation, and coagulation sedimentation method. Desalin Water Treat 57:25369–25378. https://doi.org/10.1080/19443994.2016.1155174

    Article  CAS  Google Scholar 

  19. Bambague EMJ, Parra CAM, Delgado MFR, Martinez IQ, Mosquera DM, Apolinar JSA, Martínez FM (2023) Photo-fenton and electro-fenton performance for the removal of pharmaceutical compounds in real urban wastewater. Electrochim Acta 442:141905. https://doi.org/10.1016/j.electacta.2023.141905

    Article  CAS  Google Scholar 

  20. Pereira D, Gil MV, Esteves VI, Silva NJO, Otero M, Calisto V (2023) Ex-situ magnetic activated carbon for the adsorption of three pharmaceuticals with distinct physicochemical properties from real wastewater. J Hazard Mater 443:130258. https://doi.org/10.1016/j.jhazmat.2022.130258

    Article  CAS  PubMed  Google Scholar 

  21. Cao Y, Li X, Wang B (2022) Ultrafast and selective adsorption of pharmaceuticals from wastewater by precisely designed metal organic framework with missing linker defects. J Clean Prod 380:135060. https://doi.org/10.1016/j.jclepro.2022.135060

    Article  CAS  Google Scholar 

  22. Xiong P, Zhanga H, Li G, Liao C, Jiang G (2021) Adsorption removal of ibuprofen and naproxen from aqueous solution with Cu-doped Mil-101(Fe). Sci Total Environ 797:149179. https://doi.org/10.1016/j.scitotenv.2021.149179

    Article  CAS  PubMed  Google Scholar 

  23. Tran HN, Nguyen HC, Woo SH, Nguyen TV, Vigneswaran S, Bandegharaei AH, Rinklebe J, Sarmah AK, Ivanets A, Dotto GL, Bui TT, Juang RS, Chao HP (2019) Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: a comprehensive and critical review. Crit Rev Environ Sci Technol 49:2155–2219. https://doi.org/10.1080/10643389.2019.1607442

    Article  CAS  Google Scholar 

  24. Rac V, Rakicà V, Stošić D, Pavlović V, Bosnar S, Auroux A (2020) Enhanced accessibility of active sites in hierarchical ZSM-5 zeolite for removal of pharmaceutically active substances: adsorption and microcalorimetric study. Arab J Chem 13:1945–1954. https://doi.org/10.1016/j.arabjc.2018.02.012

    Article  CAS  Google Scholar 

  25. Thiebaulta T, Boussafira M, Fougèrec L, Destandauc E, Monnina L, Le Milbeaua C (2019) Clay minerals for the removal of pharmaceuticals: Initial investigations of their adsorption properties in real wastewater effluents. Environ Nanotechnol Monit Mana 12:100266. https://doi.org/10.1016/j.enmm.2019.100266

    Article  Google Scholar 

  26. El-Sheikh AH, Qawariq RF, Abdelghani JI (2019) Adsorption and magnetic solid-phase extraction of NSAIDs from pharmaceutical wastewater using magnetic carbon nanotubes: effect of sorbent dimensions, magnetite loading and competitive adsorption study. Environ Technol Innov 16:100496. https://doi.org/10.1016/j.eti.2019.100496

    Article  Google Scholar 

  27. Subaihi A, Shahat A (2023) Synthesis and characterization of super high surface area silica-based nanoparticles for adsorption and removal of toxic pharmaceuticals from aqueous solution. J Mol Liq 378:121615. https://doi.org/10.1016/j.molliq.2023.121615

    Article  CAS  Google Scholar 

  28. Olusegun SJ, Souza TGF, Souza GO, Osial M, Mohallem NDS, Ciminelli VST, Krysinski P (2023) Iron-based materials for the adsorption and photocatalytic degradation of pharmaceutical drugs: a comprehensive review of the mechanism pathway. J Water Process Eng 51:103457. https://doi.org/10.1016/j.jwpe.2022.103457

    Article  Google Scholar 

  29. Zhao F, Fang S, Gao Y, Bi J (2022) Removal of aqueous pharmaceuticals by magnetically functionalized Zr-MOFs: Adsorption Kinetics, Isotherms, and regeneration. J Colloid Interface Sci 615:876–886. https://doi.org/10.1016/j.jcis.2022.02.018

    Article  CAS  PubMed  Google Scholar 

  30. Tomul F, Arslan Y, Kabak B, Trak D, Kendüzler E, Lima EC, Tran HN (2020) Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water. Sci Total Environ 726:137828. https://doi.org/10.1016/j.scitotenv.2020.137828

    Article  CAS  PubMed  Google Scholar 

  31. Puga A, Moreira MM, Pazos M, Figueiredo SA, Sanromán MA, Matos CD, Rosales E (2022) Continuous adsorption studies of pharmaceuticals in multicomponent mixtures by agroforestry biochar. J Environ Chem Eng 10:106977. https://doi.org/10.1016/j.jece.2021.106977

    Article  CAS  Google Scholar 

  32. Shin J, Kwak J, Lee Y-G, Kim S, Choi M, Bae S, Lee S-H, Park Y, Chon K (2021) Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: contribution of hydrophobic and π-π interactions. Environ Pollut 270:116244. https://doi.org/10.1016/j.envpol.2020.116244

    Article  CAS  PubMed  Google Scholar 

  33. Ngo DNG, Chuang X-Y, Huang C-P, Hua L-C, Huang C (2023) Compositional characterization of nine agricultural waste biochars: The relations between alkaline metals and cation exchange capacity with ammonium adsorption capability. J Environ Chem Eng 11:110003. https://doi.org/10.1016/j.jece.2023.110003

    Article  CAS  Google Scholar 

  34. Zhang J, Lu M, Wan J, Sun Y, Lan H, Deng X (2018) Effects of pH, dissolved humic acid and Cu2+ on the adsorption of norfloxacin on montmorillonite-biochar composite derived from wheat straw. Biochem Eng J 130:104–112. https://doi.org/10.1016/j.bej.2017.11.018

    Article  CAS  Google Scholar 

  35. Xu H, Han Y, Wang G, Deng P, Feng L (2022) Walnut shell biochar based sorptive remediation of estrogens polluted simulated wastewater: characterization, adsorption mechanism and degradation by persistent free radicals. Environ Technol Innov 28:102870. https://doi.org/10.1016/j.eti.2022.102870

    Article  CAS  Google Scholar 

  36. Kabak B, Kendüzler E (2022) Synthesis, characterization and adsorption/sensing applications of novel cadmium (II) based coordination polymer. J Environ Chem Eng 10:107989. https://doi.org/10.1016/j.jece.2022.107989

    Article  CAS  Google Scholar 

  37. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  38. Watwe V, Kulkarni S, Kulkarni P (2023) Development of dried uncharred leaves of ficus benjamina as a novel adsorbent for cationic dyes: Kinetics, isotherm, and batch optimization. Ind Crops Prod 195:116449. https://doi.org/10.1016/j.indcrop.2023.116449

    Article  CAS  Google Scholar 

  39. Chowdhury S, Misra R, Kushwaha P, Das P (2011) Optimum sorption isotherm by linear and nonlinear methods for safranin onto alkali-treated rice husk. Bioremediat J 15:77–89. https://doi.org/10.1080/10889868.2011.570282

    Article  CAS  Google Scholar 

  40. Freundlich H (1907) Über die Adsorption in Lösungen. Z fur Phys Chem 57:385–470

    Article  CAS  Google Scholar 

  41. Lagergren SK, Sven K (1898) About the theory of so-called adsorption of soluble substances. Vetensk Handl 24:1–39

    Google Scholar 

  42. Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18:1501–1507

    Article  CAS  Google Scholar 

  43. McLintock IS (1967) The elovich equation in chemisorption kinetics. Nature 216:1204

    Article  CAS  Google Scholar 

  44. Debnath S, Das R (2023) Strong adsorption of CV dye by Ni ferrite nanoparticles for waste water purification: Fits well the pseudo second order kinetic and freundlich isotherm model. Ceram Int 49:16199–16215. https://doi.org/10.1016/j.ceramint.2023.01.218

    Article  CAS  Google Scholar 

  45. Smiljanić D, Gennaro B, Daković A, Galzerano B, Germinario C, Izzo F, Rottinghaus GE, Langella A (2021) Removal of non-steroidal anti-inflammatory drugs from water by zeolite-rich composites: the interference of inorganic anions on the ibuprofen and naproxen adsorption. J Environ Manage 286:112168. https://doi.org/10.1016/j.jenvman.2021.112168

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt MP, Ashworth DJ, Celis N, Ibekwe AM (2023) Optimizing date palm leaf and pistachio shell biochar properties for antibiotic adsorption by varying pyrolysis temperature. Bioresour Technol 21:101325. https://doi.org/10.1016/j.biteb.2022.101325

    Article  CAS  Google Scholar 

  47. Wang H, Al-Kurdhani JMH, Ma J, Wang Y (2023) Adsorption of Zn2+ ion by macadamia nutshell biochar modified with carboxymethyl chitosan and potassium ferrate. J Environ Chem Eng 11:110150. https://doi.org/10.1016/j.jece.2023.110150

    Article  CAS  Google Scholar 

  48. Yin G, Chen X, Sarkar B, Bolan NS, Wei T, Zhou H, Wang H (2023) Co-adsorption mechanisms of Cd(II) and As(III) by an Fe-Mn binary oxide biochar in aqueous solution. J Chem Eng 466:143199. https://doi.org/10.1016/j.cej.2023.143199

    Article  CAS  Google Scholar 

  49. Song X, Li K, Ninga P, Wang C, Sun X, Tang L, Ruan H, Han S (2017) Surface characterization studies of walnut-shell biochar catalysts for simultaneously removing of organic sulfur from yellow phosphorus tail gas. Appl Surf Sci 425:130–140. https://doi.org/10.1016/j.apsusc.2017.06.328

    Article  CAS  Google Scholar 

  50. Zhou S, Wei Y, Li B, Wang H (2019) Cleaner recycling of iron from waste copper slag by using walnut shell char as green reductant. J Clean Prod 217:423–431. https://doi.org/10.1016/j.jclepro.2019.01.184

    Article  CAS  Google Scholar 

  51. Quan C, Wang W, Su J, Gao N, Wu C, Xu G (2023) Characteristics of activated carbon derived from camellia oleifera cake for nickel ions adsorption. Biomass Bioenergy 171:106748. https://doi.org/10.1016/j.biombioe.2023.106748

    Article  CAS  Google Scholar 

  52. Turk Sekulic M, Boskovic N, Slavkovic A, Garunovic J, Kolakovic S, Pap S (2019) Surface functionalised adsorbent for emerging pharmaceutical removal: adsorption performance and mechanisms. Process Saf Environ 125:50–63. https://doi.org/10.1016/j.psep.2019.03.007

    Article  CAS  Google Scholar 

  53. Diao R, Zhu X, Wang C, Zhu X (2020) Synergistic effect of physicochemical properties and reaction temperature on gasification reactivity of walnut shell chars. Energy Convers Manag 204:112313. https://doi.org/10.1016/j.enconman.2019.112313

    Article  CAS  Google Scholar 

  54. Boudraa I, Bougherara H, Cheurfi W, Kebabi B (2017) Characterization of the sludge of Batna (Algeria) waste water treatment plant for its valorization. J New Technol Mater 7:64–68. https://doi.org/10.12816/0044037

    Article  CAS  Google Scholar 

  55. Thommes M, Kaneko K, Neimark AV, Olivier JP, Reinoso FR, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  56. Sun S, Cao J, Xu Z, Yang Z, Xiong W, Song P, Zhong R, Peng S (2020) Porous biochar derived from waste distiller’s grains for hexavalent chromium removal: adsorption performance and mechanism. J Solid State Chem 289:121492. https://doi.org/10.1016/j.jssc.2020.121492

    Article  CAS  Google Scholar 

  57. Ai L, Li M, Li L (2011) Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics. J Chem Eng Data 56:3475–3483. https://doi.org/10.1021/je200536h

    Article  CAS  Google Scholar 

  58. Naranjo CEA, Aldás MB, Cabrera G, Guerrero VH (2021) Caffeine removal from synthetic wastewater using magnetic fruit peel composites: material characterization, isotherm and kinetic studies. Environ Chall 5:100343. https://doi.org/10.1016/j.envc.2021.100343

    Article  CAS  Google Scholar 

  59. Sips R (1948) The structure of a catalyst surface. J Chem Phys 16:490–495. https://doi.org/10.1063/1.1746922

    Article  CAS  Google Scholar 

  60. Tempkin MJ, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim URSS 12:217–222

    Google Scholar 

  61. Cimirro NFGM, Lima EC, Cunha MR, Thue PS, Grimm A, Reis GS, Rabiee N, Saeb MR, Keivanimehr F, Habibzadeh S (2022) Removal of diphenols using pine biochar. Kinetics, equilibrium, thermodynamics, and mechanism of uptake. J Mol Liq 364:119979. https://doi.org/10.1016/j.molliq.2022.119979

    Article  CAS  Google Scholar 

  62. Fard MA, Barkdoll B (2018) Using recyclable magnetic carbon nanotube to remove micropollutants from aqueous solutions. J Mol Liq 249:193–202. https://doi.org/10.1016/j.molliq.2017.11.039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds of Burdur Mehmet Akif Ersoy University under the project number of 0652-YL-20.

Author information

Authors and Affiliations

Authors

Contributions

RŞ: Investigation, Visualization, Data curation, Formal analysis, Writing– original draft. BK: Investigation, Visualization, Data curation, Formal analysis, Writing—original draft. EK: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing—original draft, Writing—review & editing, Visualization, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Erdal Kendüzler.

Ethics declarations

Competing interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2374 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şensoy, R., Kabak, B. & Kendüzler, E. Kinetic and isothermal studies of naproxen adsorption from aqueous solutions using walnut shell biochar. Reac Kinet Mech Cat 137, 1031–1049 (2024). https://doi.org/10.1007/s11144-024-02586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-024-02586-1

Keywords

Navigation