Skip to main content
Log in

Grinding synthesis of SAPO-44 in the presence of dual templates: a promising catalyst for methanol to propylene reaction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The grinding synthesis of CHA-type SAPO-44 molecular sieves were firstly achieved in the presence of dual templates. The structure and physicochemical properties of several selected SAPO-44 samples were analyzed by XRD, FT-IR, SEM, N2 adsorption–desorption, EDS, and NH3-TPD techniques. It was found that the composition of dual templates has a greater influence on the Si content, crystal size, specific surface area and pore volume, acid strength and distribution of SAPO-44. In comparison to the SAPO-44 catalyst guided by the single template, the dual templates directed SAPO-44 catalysts showed more excellent catalytic performance in the methanol-to-olefin (MTO) reaction, with their catalytic lifetime extending from 90 to 320 min and P/E ratio reaching up to 50. The outstanding catalytic performance exhibited by these SAPO-44 catalysts demonstrated their high application prospect in the methanol to propylene process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availabilit

Not applicable.

References

  1. Martinez C, Corma A (2011) Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord Chem Rev 255:1558–1580

    Article  CAS  Google Scholar 

  2. Zhang Q, Yu J, Corma A (2020) Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Adv Mater 32(44):1–31

    Article  Google Scholar 

  3. Xu H, Wu P (2022) New progress in zeolite synthesis and catalysis. Natl Sci Rev 9(9):1–18

    Article  Google Scholar 

  4. Jiang N, Shang R, Heijman S, Rietveld L (2018) High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review. Water Res 144:145–161

    Article  CAS  PubMed  Google Scholar 

  5. Fu Y, Liu Y, Li Z, Zhang Q, Yang X, Zhao C, Zhang C, Wang H, Yang R (2020) Insights into adsorption separation of N2/O2 mixture on FAU zeolites under plateau special conditions: a molecular simulation study. Sep Purif Technol 251:117405–117413

    Article  CAS  Google Scholar 

  6. Pan M, Omar H, Rohani S (2017) Application of nanosize zeolite molecular sieves for medical oxygen concentration. Nanomater 7(8):195–213

    Article  Google Scholar 

  7. Chen D, Moljord K, Holmen A (2012) A methanol to olefins review: diffusion, coke formation and deactivation SAPO type catalysts. Microporous Mesoporous Mater 164:239–250

    Article  CAS  Google Scholar 

  8. Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5(3):1922–1938

    Article  CAS  Google Scholar 

  9. Dusselier M, Davis M (2018) Small-pore zeolites: synthesis and catalysis. Chem Rev 118(11):5265–5329

    Article  CAS  PubMed  Google Scholar 

  10. Zhang N, Xin Y, Li Q, Ma X, Qi Y, Zheng L, Zhang Z (2019) Ion exchange of one-pot synthesized Cu-SAPO-44 with NH4NO3 to promote Cu dispersion and activity for selective catalytic reduction of NOx with NH3. Catalysts 9(11):882–891

    Article  CAS  Google Scholar 

  11. Xin Y, Zhang N, Wang X, Li Q, Ma X, Qi Y, Zheng L, Anderson J, Zhang Z (2019) Efficient synthesis of the Cu-SAPO-44 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Catal Today 332:35–41

    Article  CAS  Google Scholar 

  12. Bhaumik P, Dhepe P (2015) Effects of careful designing of SAPO-44 catalysts on the efficient synthesis of furfural. Catal Today 251:66–72

    Article  CAS  Google Scholar 

  13. Zhang Q, Wang Q, Wang S (2020) Efficient heterogeneous Fenton-like catalysis of Fe-doped SAPO-44 zeolite synthesized from bauxite and rice husk. Chem Phys Lett 753:137598–137606

    Article  CAS  Google Scholar 

  14. Chen J, Thomas J (1991) Synthesis of SAPO-41 and SAPO-44 and their performance as acidic catalysts in the conversion of methanol to hydrocarbons. Catal Lett 11:199–207

    Article  CAS  Google Scholar 

  15. Akolekar D, Bhargava S, Gorman J, Paterson P (1999) Formation of small pore SAPO-44 type molecular sieve. Colloids Surf A 146:375–386

    Article  CAS  Google Scholar 

  16. Li H, Xin Y, Wang X, Zhou Y, Li Q, Zhang Z (2016) A novel dual-template method for synthesis of SAPO-44 zeolite. RSC Adv 6(42):35910–35913

    Article  CAS  Google Scholar 

  17. Ren L, Wu Q, Yang C, Zhu L, Li C, Zhang P, Zhang H, Meng X, Xiao F (2012) Solvent-free synthesis of zeolites from solid raw materials. J Am Chem Soc 134(37):15173–15176

    Article  CAS  PubMed  Google Scholar 

  18. Wu Q, Meng X, Gao X, Xiao F (2018) Solvent-free synthesis of zeolites: mechanism and utility. Acc Chem Res 51(6):1396–1403

    Article  CAS  PubMed  Google Scholar 

  19. Meng X, Xiao F (2014) Green routes for synthesis of zeolites. Chem Rev 114(2):1521–1543

    Article  CAS  PubMed  Google Scholar 

  20. Zhao X, Zhao J, Wen J, Li A, Li G, Wang X (2015) Microwave synthesis of AFI-type aluminophosphate molecular sieve under solvent-free conditions. Microporous Mesoporous Mater 213:192–196

    Article  CAS  Google Scholar 

  21. Han Z, Zhang F, Zhao X (2019) Green energy-efficient synthesis of Fe-ZSM-5 zeolite and its application for hydroxylation of phenol. Microporous Mesoporous Mater 290:109679–109686

    Article  Google Scholar 

  22. Niu L, Li Y, Long X, Ji D, Wang D, Li H, Zhao X (2022) Grinding synthesis of SAPO-18 zeolite by a single/dual-template route: which is the best catalyst of methanol-to-olefins reaction? React Kinet Catal Lett 135(6):3085–3098

    Article  CAS  Google Scholar 

  23. Hamidzadeh M, Nazari M, Fard MR (2021) MOR/DEA/TEA mixed-template synthesis of CHA-type SAPO with different silica and alumina sources. New J Chem 45(47):22113–22122

    Article  CAS  Google Scholar 

  24. Yang Z, Wang D, Ji D, Li G, Zhao X (2021) Solvent-free synthesis of FeAPO-44 molecular sieves with CHA structures. Solid State Sci 119:106698–106704

    Article  CAS  Google Scholar 

  25. Zhu Q, Kondo J, Ohnuma R, Kubota Y, Yamaguchi M, Tatsumi T (2008) The study of methanol-to-olefin over proton type aluminosilicate CHA zeolites. Microporous Mesoporous Mater 112:153–161

    Article  CAS  Google Scholar 

  26. Deimund M, Harrison L, Lunn J, Liu Y, Malek A, Shayib R, Davis M (2016) Effect of heteroatom concentration in SSZ-13 on the methanol-to-olefins reaction. ACS Catal 6(2):542–550

    Article  CAS  Google Scholar 

  27. Huang Y, David M, Christopher W (2004) A study of the formation of molecular sieve SAPO-44. J Phys Chem B 108(6):1855–1865

    Article  CAS  Google Scholar 

  28. Hu X, Yuan L, Chen S, Luo J, Sun H, Li S, Li L, Wang C (2019) GeAPSO-34 molecular sieves: synthesis, characterization and methanol-to-olefins performance. Catal Commun 123:38–43

    Article  CAS  Google Scholar 

  29. Yan N, Xu H, Zhang W, Sun T, Guo P, Tian P, Liu Z (2018) Probing locations of organic structure-directing agents (OSDAs) and host-guest interactions in CHA-type SAPO-34/44. Microporous Mesoporous Mater 264:55–59

    Article  CAS  Google Scholar 

  30. Sun Q, Wang N, Guo G, Chen X, Yu J (2015) Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro-meso-macroporosity showing superior MTO performance. J Mater Chem A 3(39):19783–19789

    Article  CAS  Google Scholar 

  31. Li M, Wang Y, Bai L, Chang N, Nan G, Hu D, Zhang Y, Wei W (2017) Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process. Appl Catal A 531:203–211

    Article  CAS  Google Scholar 

  32. Wang C, Yang M, Tian P, Xu S, Yang Y, Wang D, Yuan Y, Liu Z (2015) Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J Mater Chem A 3(10):5608–5616

    Article  CAS  Google Scholar 

  33. Wang S, Qin Z, Dong M, Wang J, Fan W (2022) Recent progress on MTO reaction mechanisms and regulation of acid site distribution in the zeolite framework. Chem Catal 2(7):1657–1685

    Article  CAS  Google Scholar 

  34. Hu X, Yang M, Fan D, Qi G, Wang J, Wang J, Yu T, Li W, Shen M (2016) The role of pore diffusion in determining NH3 SCR active sites over Cu/SAPO-34 catalysts. J Catal 341:55–61

    Article  CAS  Google Scholar 

  35. Liu G, Tian P, Zhang Y, Li J, Xu L, Meng S, Liu Z (2008) Synthesis of SAPO-34 templated by diethylamine: crystallization process and Si distribution in the crystals. Microporous Mesoporous Mater 114(1–3):416–423

    Article  CAS  Google Scholar 

  36. Dai W, Wang C, Dyballa M, Wu G, Guan N, Li L, Xie Z, Hunger M (2015) Understanding the early stages of the methanol-to-olefin conversion on H-SAPO-34. ACS Catal 5(1):317–326

    Article  CAS  Google Scholar 

  37. Bjørgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) Conversion of methanol to hydrocarbons over zeolite H-ZSM5: on the origin of the olefinic species. J Catal 249:195–207

    Article  Google Scholar 

  38. Haw JF, Song W, Marcus DM, Nicholas JB (2003) The mechanism of methanol to hydrocarbon catalysis. Acc Chem Res 36(5):317–326

    Article  CAS  PubMed  Google Scholar 

  39. Fan D, Tian P, Su X, Yuan Y, Wang D, Wang C, Yang M, Wang L, Xu S, Liu Z (2013) Aminothermal synthesis of CHA-type SAPO molecular sieves and their catalytic performance in methanol to olefins (MTO) reaction. J Mater Chem A 1(45):14206–14213

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22168022) and the Basic Research Innovation Group Project of Gansu Province, China (No. 22JR5RA219).

Funding

Funding was provided by National Natural Science Foundation of China (No. 22168022) and Basic Research Innovation Group Project of Gansu Province (No. 22JR5RA219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wang, H., Peng, X. et al. Grinding synthesis of SAPO-44 in the presence of dual templates: a promising catalyst for methanol to propylene reaction. Reac Kinet Mech Cat 137, 1355–1368 (2024). https://doi.org/10.1007/s11144-024-02572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-024-02572-7

Keywords

Navigation