Skip to main content
Log in

Assessment of TiO2 and Ag/TiO2 photocatalysts for domestic wastewater treatment: synthesis, characterization, and degradation kinetics analysis

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, the synthesis and characterization of the TiO2 and Ag/TiO2 nanoparticles were carried out and their influence on the oxidation of organic matter of domestic wastewater was evaluated using a heterogeneous photocatalytic system. The TiO2 and Ag/TiO2 nanoparticles were synthesized by the sol–gel method and the chemical reduction method. The nanoparticles were characterized by four different techniques (X-ray diffractometry, UV–Vis spectrophotometry, Fourier transform infrared spectroscopy, and scanning electron microscopy). The importance of the synthesized nanoparticles in the treatment of residual water was evaluated using a photocatalysis process with UV light (λ = 254 nm). Raw domestic wastewater generated at the local university was used. Due to the complexity of the wastewater composition, the Chemical Oxygen Demand (COD) was used to evaluate the oxidation of organic matter in the photocatalytic system. Three different concentrations of TiO2 and Ag/TiO2 were evaluated: 0.25, 0.5 and 1 g L−1. The photocatalysis process achieved a maximum degradation of 68% and 77% when using TiO2 and Ag/TiO2 after 2 h operation. A maximum kinetic rate value of 0.013 min−1 was obtained when Ag/TiO2 was used as a catalyst, like the observed in other advanced oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bustos-Terrones Y, Estrada-Vázquez R, Ramírez-Pereda B, Bustos-Terrones V, Rangel-Peraza JG (2020) Kinetics of a fixed bed reactor with immobilized microorganisms for the removal of organic matter and phosphorous. Water Environ Res. https://doi.org/10.1002/wer.1353

    Article  PubMed  Google Scholar 

  2. Castillo-Ledezma JH, Salas JS, López-Malo A, Bandala ER (2011) Effect of pH, solar irradiation, and semiconductor concentration on the photocatalytic disinfection of Escherichia coli in water using nitrogen-doped TiO2. Eur Food Res Technol 233:825

    Article  CAS  Google Scholar 

  3. Rashid U, Liang H, Ahmad H, Abbas M, Iqbal A, Hamed YS (2021) Study of (Ag and TiO2)/water nanoparticles shape effect on heat transfer and hybrid nanofluid flow toward stretching shrinking horizontal cylinder. Results Phys 21:103812

    Article  Google Scholar 

  4. Yang H, Wang Y, Xue X (2014) Influences of glycerol as an efficient doping agent on crystal structure and antibacterial activity of B-TiO2 nano-materials. Colloids Surf B: Biointerfaces 122:701–708

    Article  CAS  PubMed  Google Scholar 

  5. Xue X, Wang Y, Yang H (2013) Preparation and characterization of boron-doped titania nano-materials with antibacterial activity. Appl Surf Sci 264:94–99

    Article  CAS  Google Scholar 

  6. Peiris S, de Silva HB, Ranasinghe KN, Bandara SV, Perera IR (2021) Recent development and future prospects of TiO2 photocatalysis. J Chin Chem Soc 68:738–769

    Article  CAS  Google Scholar 

  7. Ijaz M, Zafar M (2021) Titanium dioxide nanostructures as efficient photocatalyst: progress, challenges and perspective. Int J Energy Res 45:3569–3589

    Article  CAS  Google Scholar 

  8. Losada LM, Laguna Castillo EJ, Osorio Restrepo EA, Serna Galvis EA, Torres Palma RA (2017) Tratamiento de aguas contaminadas con colorantes mediante fotocatálisis con TiO2 usando luz artificial y solar. Prod Limpia 12(2):50–60

    Article  Google Scholar 

  9. Fernández JA, Cardozo MG, Carrascal AK, Salcedo JC, Pedroza AM, Daza CE (2015) Tratamiento de agua residual de microbiología usando películas delgadas de TiO2. Ing Compet 17:35–48

    Google Scholar 

  10. Dodoo-Arhin D, Buabeng FP, Mwabora JM, Amaniampong PN, Agbe H, Nyankson E, Asiedu NY (2018) The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants. Heliyon 4:e00681

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bibi S, Shah S, Muhammad F, Siddiq M, Kiran L, Aldossari A, Sarwar S (2023) Cu-doped mesoporous TiO2 photocatalyst for efficient degradation of organic dye via visible light photocatalysis. Chemosphere 339:139583

    Article  CAS  PubMed  Google Scholar 

  12. Tobaldi DM, Pullar RC, Gualtieri AF, Seabra MP, Labrincha JA (2013) Sol–gel synthesis, characterisation and photocatalytic activity of pure, W-, ag- and W/Ag co-doped TiO2 nanopowders. Chem Eng Technol 214:364–375

    Article  CAS  Google Scholar 

  13. Wang Y, Wu Y, Yang H, Xue X, Liu Z (2016) Doping TiO2 with boron or/and cerium elements: effects on photocatalytic antimicrobial activity. Vacuum 131:58–64

    Article  CAS  Google Scholar 

  14. Wang Y, Xue X, Yang H (2014) Preparation and characterization of carbon or/and boron-doped titania nano-materials with antibacterial activity. Ceram Int 408:12533–12537

    Article  Google Scholar 

  15. Wang L, Ali J, Zhang C, Mailhot G, Pan G (2020) Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag composite nanofibers for wastewater purification. J Environ Chem Eng 8:102104

    Article  CAS  Google Scholar 

  16. Ghosh M, Mondal M, Mandal S, Roy A, Chakrabarty S, Chakrabarti G, Pradhan SK (2020) Enhanced photocatalytic and antibacterial activities of mechanosynthesized TiO2–Ag nanocomposite in wastewater treatment. J Mol Struct 1211:128076

    Article  CAS  Google Scholar 

  17. Athanasekou C, Romanos GE, Papageorgiou SK, Manolis GK, Katsaros F, Falaras P (2017) Photocatalytic degradation of hexavalent chromium emerging contaminant via advanced titanium dioxide nanostructure. Rev Ing Quim 318:171–180

    CAS  Google Scholar 

  18. Subekti R, Helmiyati H (2020) Sodium alginate-TiO2-bentonite nanocomposite synthesis for photocatalysis of methylene blue dye removal. IOP Publishing 763:012018

    CAS  Google Scholar 

  19. Domínguez-Espíndola RB, Varia JC, Álvarez-Gallegos A, Ortiz-Hernández ML, Peña-Camacho JL, Silva-Martinez S (2017) Photoelectrocatalytic inactivation of fecal coliform bacteria in urban wastewater using nanoparticulated films of TiO2 and TiO2/Ag. Environ Technol 38:606–614

    Article  PubMed  Google Scholar 

  20. Nguyen CH, Fu CC, Juang RS (2018) Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J Clean Prod 202:413–427

    Article  CAS  Google Scholar 

  21. De la Cruz RD, Torres GT, Arévalo JC, Gomez R, Aguilar-Elguezabal A (2010) Synthesis and characterization of TiO2 doping with rare earths by sol–gel method: photocatalytic activity for phenol degradation. J Sol-Gel Sci Technol 56:219–226

    Article  Google Scholar 

  22. Xu L, Zang H, Zhang Q, Chen Y, Wei Y, Yan J, Zhao Y (2013) Photocatalytic degradation of atrazine by H3PW12O40/Ag-TiO2: kinetics, mechanism and degradation pathways. Chem Eng Technol 232:174–182

    Article  CAS  Google Scholar 

  23. Panayotov DA, Morris JR (2016) Surface chemistry of Au/TiO2: thermally and photolytically activated reactions. Surf Sci Rep 71:77–271

    Article  CAS  Google Scholar 

  24. Alarifi A, Deraz NM, Shaban S (2009) Structural, morphological and magnetic properties of NiFe2O4 nano-particles. J Alloys Compd 486:501–506

    Article  CAS  Google Scholar 

  25. Ramos D, Bezerra PC, Quina FH, Dantas RF, Casagrande GA, Oliveira SC, Machulek A (2015) Synthesis and characterization of TiO2 and TiO2/Ag for use in photodegradation of methylviologen, with kinetic study by laser flash photolysis. Environ Sci Pollut Res Int 22:774–783

    Article  CAS  PubMed  Google Scholar 

  26. Sagadevan S, Pal K, Koteeswari P, Subashini A (2017) Synthesis and characterization of TiO2/graphene oxide nanocomposite. J Mater Sci: Mater Electron 28:7892–7898

    CAS  Google Scholar 

  27. Chatzisymeon E, Droumpali A, Mantzavinos D, Venieri D (2011) Disinfection of water and wastewater by UV-A and UV-C irradiation: application of real-time PCR method. Photochem Photobiol Sci 10:389–395

    Article  CAS  PubMed  Google Scholar 

  28. Bockenstedt J, Vidwans NA, Gentry T, Vaddiraju S (2021) Catalyst recovery, regeneration and reuse during large-scale disinfection of water using photocatalysis. Water 13(19):2623

    Article  CAS  Google Scholar 

  29. Roulová N, Hrdá K, Kašpar M, Peroutková P, Josefová D, Palarčík J (2022) Removal of chloroacetanilide herbicides from water using heterogeneous photocatalysis with TiO2/UV-A. Catalysts 12(6):597

    Article  Google Scholar 

  30. Jamshidi F, Dehghani M, Yousefinejad S, Azhdarpoor A (2019) Photocatalytic degradation of alachlor by TiO2 nanoparticles from aqueous solutions under UV radiation. J Exp Nanosci 14(1):116–128

    Article  CAS  Google Scholar 

  31. Ren M, Qu G, Li H, Ning P (2019) Influence of dissolved organic matter components on arsenate adsorption/desorption by TiO2. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.120780

    Article  PubMed  Google Scholar 

  32. Safari GH, Hoseini M, Seyedsalehi M, Kamani H, Jaafari J, Mahvi AH (2015) Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int J Environ Sci Techno 12:603–616

    Article  CAS  Google Scholar 

  33. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, New York

    Book  Google Scholar 

  34. Estrada-Vázquez R, Vaca-Mier M, Bustos-Terrones V, Rangel-Peraza JG, Loaiza JG, Hermosillo-Nevárez JJ, Bustos-Terrones YA (2023) Degradation of agricultural pollutants by biopolymer-enhanced photocatalysis: application of Taguchi method for optimization. Kinet Mech Catal React. https://doi.org/10.1007/s11144-023-02515-8

    Article  Google Scholar 

  35. Martínez-Rojas V, Matejova L, López-Milla A, Cruz GJ, Solís Veliz JL, Gomez Leon MM (2015) Obtención de partículas de TiO2 por sol-gel, asistido con ultrasonido para aplicaciones fotocatalíticas. Revista de la Sociedad Química del Perú. https://doi.org/10.37761/rsqp.v81i3.17

    Article  Google Scholar 

  36. Al Qarni F, Alomair N, Mohamed H (2019) Environment-friendly nanoporous titanium dioxide with enhanced photocatalytic activity. Catalysts. https://doi.org/10.3390/catal9100799

    Article  Google Scholar 

  37. Echavarría AM, Robledo S, Bejarano G (2017) Influencia de las nanopartículas de Ag sobre las propiedades mecánicas y tribológicas y en el efecto citotóxico y bactericida de los recubrimientos de TaN (Ag). Rev de Metal 53:e085

    Article  Google Scholar 

  38. Komaraiah D, Radha E, Sivakumar J, Reddy MR, Sayanna R (2020) Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films. Opt Mater 108:110401

    Article  CAS  Google Scholar 

  39. Pinto VV, Ferreira MJ, Silva R, Santos HÁ, Silva F, Pereira CM (2010) Long time effect on the stability of silver nanoparticles in aqueous medium: effect of the synthesis and storage conditions. Colloids Surf A 364:19–25

    Article  CAS  Google Scholar 

  40. Barrientos KC, Iparraguirre DEA, Cavero HAA (2019) Síntesis y caracterización de nanocompuestos Fe3O4/Ag: su efecto contra Enterobacter aerogenes y Enterococcus faecalis. Rev Colomb Quím 48:33–39

    Article  CAS  Google Scholar 

  41. Ramacharyulu PV, Praveen-kumar J, Prasad GK, Srivastava AR (2015) Synthesis, characterization and photocatalytic activity of Ag-TiO2 nanoparticulate film. RSC Adv 5:139–1314

    Google Scholar 

  42. Pragathiswaran C, Smitha C, Abbubakkar BM, Govindhan P, Krishnan NA (2021) Synthesis and characterization of TiO2/ZnO–Ag nanocomposite for photocatalytic degradation of dyes and anti-microbial activity. Mater Today 45:3357–3364

    CAS  Google Scholar 

  43. Haider AJ, AL Anbari RH, Kadhim GR, Salame CT (2017) Exploring potential environmental applications of TiO2 nanoparticles. Energy Procedia 119:332–345

    Article  CAS  Google Scholar 

  44. Yang H, Li G, An T, Gao Y, Fu J (2010) Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of sulfa drugs. Catal Today 153:200–207

    Article  CAS  Google Scholar 

  45. Lusvardi G, Barani C, Giubertoni F, Paganelli G (2017) Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants. Materials 10:1208

    Article  PubMed  PubMed Central  Google Scholar 

  46. Diaz-Uribe C, Viloria J, Cervantes L, Vallejo W, Navarro K, Romero E, Quiñones C (2018) Photocatalytic activity of Ag-TiO2 composites deposited by photoreduction under UV irradiation. Int J Photoenergy 6080432:1–8

    Article  Google Scholar 

  47. Torrell M, Kabir R, Cunha L, Vasilevskiy MI, Vaz F, Cavaleiro A, Barradas NP (2011) Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: the effect of thermal annealing. Int J Appl Phys 109:074310

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank TecNM/Instituto Tecnológico de Culiacán for providing the infrastructure to carry out this work and CONAHCYT for the scholarship provided to the first author.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaneth A. Bustos-Terrones.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 746 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada-Vázquez, R., Vaca-Mier, M., Bustos-Terrones, V. et al. Assessment of TiO2 and Ag/TiO2 photocatalysts for domestic wastewater treatment: synthesis, characterization, and degradation kinetics analysis. Reac Kinet Mech Cat 137, 1085–1104 (2024). https://doi.org/10.1007/s11144-023-02557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02557-y

Keywords

Navigation