Skip to main content
Log in

Enhanced photocatalytic decomposition of methylene blue and toluene gas with hydrothermally coated TiO2-supported on Ag–CaAl2O4:Eu2+, Nd3+ long-lasting phosphor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Titanium dioxide was coated by hydrothermal reaction on the surface of CaAl2O4:Eu2+,Nd3+ long-lasting phosphor beads on which a silver noble metal was impregnated to enhance photocatalytic reactivity. The phosphor composite as a TiO2 supporter was fabricated in the form of beads for convenient applications. Silver was impregnated on the CaAl2O4:Eu2+,Nd3+ long-lasting phosphor using a silver nitrate aqueous solution prior to TiO2 coating process. The morphological and compositional characteristics of the TiO2 coated phosphor composite materials were measured using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray photoelectron spectrometer (XPS). The photocatalytic properties of the TiO2 coated phosphor composite materials were analyzed through decompositions of both methylene blue dye solution and toluene gas under ultraviolet and visible light irradiation. Through measuring the variation of photocatalytic reaction with different Ag concentrations, 0.035 M Ag-impregnated TiO2/CaAl2O4:Eu2+,Nd3+ phosphor composite showed the best photocatalysis efficiency under UV and visible light illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gopalan AI, Lee JC, Saianand G et al (2020) Recent progress in the abatement of hazardous pollutants using photocatalytic TiO2-based building materials. Nanomaterials 10:1–50. https://doi.org/10.3390/nano10091854

    Article  CAS  Google Scholar 

  2. Yang L, Hakki A, Zheng L et al (2019) Photocatalytic concrete for NOx abatement: supported TiO2 efficiencies and impacts. Cem Concr Res 116:57–64. https://doi.org/10.1016/j.cemconres.2018.11.002

    Article  CAS  Google Scholar 

  3. Amorim SM, Suave J, Andrade L et al (2018) Towards an efficient and durable self-cleaning acrylic paint containing mesoporous TiO2 microspheres. Prog Org Coatings 118:48–56. https://doi.org/10.1016/J.PORGCOAT.2018.01.005

    Article  CAS  Google Scholar 

  4. Mavengere S, Kim JS (2021) Anti-fogging, photocatalytic and self-cleaning properties of TiO2-transparent coating. Korean J Mater Res 31:8–15. https://doi.org/10.3740/MRSK.2021.31.1.8

    Article  CAS  Google Scholar 

  5. Ren H, Koshy P, Chen WF et al (2017) Photocatalytic materials and technologies for air purification. J Hazard Mater 325:340–366. https://doi.org/10.1016/j.jhazmat.2016.08.072

    Article  CAS  PubMed  Google Scholar 

  6. Liu L, Li Y (2014) Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: a review. Aerosol Air Qual Res 14:453–469. https://doi.org/10.4209/aaqr.2013.06.0186

    Article  CAS  Google Scholar 

  7. Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90:1847–1868. https://doi.org/10.1007/s00253-011-3213-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koe WS, Lee JW, Chong WC et al (2020) An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ Sci Pollut Res 27:2522–2565. https://doi.org/10.1007/s11356-019-07193-5

    Article  CAS  Google Scholar 

  9. Ben Moussa S (2023) Application of the metallized titanate nanorod in the photodegradation of methyl orange. Reac Kinet Mech Cat 136:2397–2408. https://doi.org/10.1007/s11144-023-02460-6

    Article  CAS  Google Scholar 

  10. Baran T (2023) Efficiency of volatile organic compound degradation in air using doped strontium titanate photocatalysts. Quenching experiments towards understanding of doping mechanisms. Reac Kinet Mech Cat 136:3243–3256. https://doi.org/10.1007/s11144-023-02494-w

    Article  CAS  Google Scholar 

  11. Basahel SN, Ali TT, Mokhtar M, Narasimharao K (2015) Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res Lett 10:73. https://doi.org/10.1186/s11671-015-0780-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim SP, Choi MY, Choi HC (2016) Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater Res Bull 74:85–89. https://doi.org/10.1016/j.materresbull.2015.10.024

    Article  CAS  Google Scholar 

  13. Zhang J, Xu Q, Feng Z et al (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chemie 120:1790–1793. https://doi.org/10.1002/ange.200704788

    Article  Google Scholar 

  14. Szilágyi IM, Fórizs B, Rosseler O et al (2012) WO3 photocatalysts: influence of structure and composition. J Catal 294:119–127. https://doi.org/10.1016/j.jcat.2012.07.013

    Article  CAS  Google Scholar 

  15. Mishra M, Chun DM (2015) α-Fe2O3 as a photocatalytic material: a review. Appl Catal A Gen 498:126–141. https://doi.org/10.1016/j.apcata.2015.03.023

    Article  CAS  Google Scholar 

  16. Siang Ng D, Paul SC, Anggraini V et al (2020) Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Constr Build Mater 258:119627. https://doi.org/10.1016/J.CONBUILDMAT.2020.119627

    Article  CAS  Google Scholar 

  17. Opoku F, Govender KK, van Sittert CGCE, Govender PP (2017) Recent progress in the development of semiconductor-based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants. Adv Sustain Syst 1:1–24. https://doi.org/10.1002/adsu.201700006

    Article  CAS  Google Scholar 

  18. Nagaveni K, Hegde MS, Ravishankar N et al (2004) Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20:2900–2907. https://doi.org/10.1021/la035777v

    Article  CAS  PubMed  Google Scholar 

  19. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol–Gel Sci Technol 61:1–7. https://doi.org/10.1007/s10971-011-2582-9

    Article  CAS  Google Scholar 

  20. Ahadi S, Moalej NS, Sheibani S (2019) Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol–gel and mechanical alloying. Solid State Sci 96:105975. https://doi.org/10.1016/j.solidstatesciences.2019.105975

    Article  CAS  Google Scholar 

  21. Sonawane RS, Kale BB, Dongare MK (2004) Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol-gel dip coating. Mater Chem Phys 85:52–57. https://doi.org/10.1016/j.matchemphys.2003.12.007

    Article  CAS  Google Scholar 

  22. Xin B, Wang P, Ding D et al (2008) Effect of surface species on Cu–TiO2 photocatalytic activity. Appl Surf Sci 254:2569–2574. https://doi.org/10.1016/j.apsusc.2007.09.002

    Article  CAS  Google Scholar 

  23. Tseng IH, Wu JCS, Chou HY (2004) Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal 221:432–440. https://doi.org/10.1016/j.jcat.2003.09.002

    Article  CAS  Google Scholar 

  24. Wang Y, Xue X, Yang H (2014) Modification of the antibacterial activity of Zn/TiO2 nano-materials through different anions doped. Vacuum 101:193–199. https://doi.org/10.1016/j.vacuum.2013.08.006

    Article  CAS  Google Scholar 

  25. Aramendía MA, Borau V, Colmenares JC et al (2008) Modification of the photocatalytic activity of Pd/TiO2 and Zn/TiO2 systems through different oxidative and reductive calcination treatments. Appl Catal B Environ 80:88–97. https://doi.org/10.1016/j.apcatb.2007.11.017

    Article  CAS  Google Scholar 

  26. Xu Y, Xu H, Li H et al (2011) Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO. J Alloys Compd 509:3286–3292. https://doi.org/10.1016/j.jallcom.2010.11.193

    Article  CAS  Google Scholar 

  27. Liu SX, Qu ZP, Han XW, Sun CL (2004) A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catal Today 93–95:877–884. https://doi.org/10.1016/j.cattod.2004.06.097

    Article  CAS  Google Scholar 

  28. Chan SC, Barteau MA (2005) Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition. Langmuir 21:5588–5595. https://doi.org/10.1021/la046887k

    Article  CAS  PubMed  Google Scholar 

  29. Almazroai LS (2020) Enhancement of photocatalytic and sonophotocatalytic hydrogen evolution over sensitized Ag/TiO2. Mater Res Express 7:095509. https://doi.org/10.1088/2053-1591/abb9e2

    Article  CAS  Google Scholar 

  30. Yang XH, Fu HT, Wong K et al (2013) Hybrid Ag@TiO2 core-shell nanostructures with highly enhanced photocatalytic performance. Nanotechnology 24:415601. https://doi.org/10.1088/0957-4484/24/41/415601

    Article  CAS  PubMed  Google Scholar 

  31. Chakhtouna H, Benzeid H, Zari N, Qaiss A, Bouhfid R (2021) Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors. Environ Sci Pollut Res 28:44638–44666. https://doi.org/10.1007/s11356-021-14996-y

    Article  CAS  Google Scholar 

  32. Sökmen M, Candan F, Sümer Z (2001) Disinfection of E. coli by the Ag-TiO2/UV system: lipidperoxidation. J Photochem Photobiol A Chem 143:241–244. https://doi.org/10.1016/S1010-6030(01)00497-X

    Article  Google Scholar 

  33. Yu B, Leung KM, Guo Q et al (2011) Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22:2–11. https://doi.org/10.1088/0957-4484/22/11/115603

    Article  CAS  Google Scholar 

  34. Sanzone G, Zimbone M, Cacciato G et al (2018) Ag/TiO2 nanocomposite for visible light-driven photocatalysis. Superlattices Microstruct 123:394–402. https://doi.org/10.1016/j.spmi.2018.09.028

    Article  CAS  Google Scholar 

  35. Sung HJ, Kim BM, Jung SC, Kim JS (2016) Photocatalytic characteristics for the nanocrystalline TiO2 supported on Sr4Al14O25: Eu2+, Dy3+ phosphor beads. Adv Mater Lett 7:36–41. https://doi.org/10.5185/amlett.2016.6106

    Article  CAS  Google Scholar 

  36. Qu B, Zhang B, Wang L et al (2015) Mechanistic study of the persistent luminescence of CaAl2O4:Eu, Nd. Chem Mater 27:2195–2202. https://doi.org/10.1021/acs.chemmater.5b00288

    Article  CAS  Google Scholar 

  37. Rivas Mercury JM, De Aza AH, Pena P (2005) Synthesis of CaAl2O4 from powders: particle size effect. J Eur Ceram Soc 25:3269–3279. https://doi.org/10.1016/j.jeurceramsoc.2004.06.021

    Article  CAS  Google Scholar 

  38. Zhang M, Li F, Jiang S et al (2021) CaAl2O4: Eu2+, Nd3+ anti-corrosive coating and its afterglow—catalytic process. Opt Mater (Amst) 116:111049. https://doi.org/10.1016/j.optmat.2021.111049

    Article  CAS  Google Scholar 

  39. Kim J-S, Sung H-J, Kim B-J (2015) Photocatalytic characteristics for the nanocrystalline TiO2 on the Ag-doped CaAl2O4:(Eu, Nd) phosphor. Appl Surf Sci 334:151–156. https://doi.org/10.1016/j.apsusc.2014.08.169

    Article  CAS  Google Scholar 

  40. Martínez Vargas DX, Rivera De la Rosa J, Lucio-Ortiz CJ et al (2015) Photocatalytic degradation of trichloroethylene in a continuous annular reactor using Cu-doped TiO2 catalysts by sol-gel synthesis. Appl Catal B Environ 179:249–261. https://doi.org/10.1016/j.apcatb.2015.05.019

    Article  CAS  Google Scholar 

  41. Eun S-R, Mavengere S, Kim J-S (2021) Preparation of Ag-TiO2/Sr4Al14O25:Eu2+, Dy3+ photocatalyst on phosphor beads and its photoreaction characteristics. Catalysts 11:261. https://doi.org/10.3390/catal11020261

    Article  CAS  Google Scholar 

  42. Xu Q, Mavengere S, Kim JS (2021) Preparation of the CaAl2O4: Eu2+, Nd3+/TiO2 composite by peroxo titanium complex solution and its photodegradation of methylene blue. Reac Kinet Mech Cat 134:473–484. https://doi.org/10.1007/s11144-021-02051-3

    Article  CAS  Google Scholar 

  43. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027. https://doi.org/10.1016/j.watres.2010.02.039

    Article  CAS  PubMed  Google Scholar 

  44. Mavengere S, Kim J-S (2018) UV–visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites. Appl Surf Sci 444:491–496. https://doi.org/10.1016/j.apsusc.2018.03.027

    Article  CAS  Google Scholar 

  45. Mavengere S, Kim J-S (2022) Photoreactivity improvement of TiO2/Sr4Al14O25:Eu, Dy heterojunction photocatalyst by Fe doping and annealing in N2–H2 mixed gas. Appl Nanosci 12:3387–3398. https://doi.org/10.1007/s13204-022-02542-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Study and Interdisciplinary R&D Foundation Fund of the University of Seoul (2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Sik kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2884 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Dh., Mavengere, S., Cho, B. et al. Enhanced photocatalytic decomposition of methylene blue and toluene gas with hydrothermally coated TiO2-supported on Ag–CaAl2O4:Eu2+, Nd3+ long-lasting phosphor. Reac Kinet Mech Cat 137, 571–585 (2024). https://doi.org/10.1007/s11144-023-02550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02550-5

Keywords

Navigation