Skip to main content
Log in

Activation of metallocene hydride intermediates by methylaluminoxane in alkene dimerization and oligomerization

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In order to elucidate the dependence of the structure and reactivity of the bimetallic hydride intermediates formed in the systems metallocene—organoaluminum compound—activator on the nature of the transition metal atom and ligand environment, we used NMR spectroscopy to study reactions of a series of L2MCl2 complexes (M = Hf, Zr; L2 = Cp2, (CpMe)2, ansa-(Me2C)2Cp2, ansa-Me2CInd2) with HAlBui2 and MMAO-12 activator. As a result, M, Al-bimetallic intermediates containing [L2MH3] and [(L2M)2H3] type moieties were detected for both hafnium and zirconium complexes with cyclopentadienyl ligands. The [L2ZrH3] type structure predominates in the system based on the ansa-bis-indenyl zirconium complex. The detected complexes provide associates with MMAO-12 [L2MH3]·MAO and [(L2M)2H3]·MAO. The MAO-associated intermediates of the [(L2M)2H3] type are precursors of the catalytically active sites for alkene dimerization. In the system based on ansa-bis-indenyl zirconium complex, the intermediate of the [L2MH3] type affords a set of hydride structures, presumably cationic, which lead to alkene oligomerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3

Similar content being viewed by others

Data availability

The data is available in the form of supplementary information.

References

  1. Ray S, Rao PVC, Choudary NV (2012) Poly-α-olefin-based synthetic lubricants: a short review on various synthetic routes. Lubric Sci 24:23–24

    Article  CAS  Google Scholar 

  2. Makaryan IA, Sedov IV (2021) Market potential of industrial technologies for production of synthetic bases of motor oils. Russ J Gen Chem 91:1243–1259

    Article  CAS  Google Scholar 

  3. Shubkin RL, Kerkemeyer ME (1991) Tailor-making polyalphaolefins. J Synth Lubr 8:115–134

    Article  CAS  Google Scholar 

  4. Whiteley KS, Heggs TG, Koch H, Mawer RL, Immel W (2000) Polyolefins. Wiley, Weinheim

    Google Scholar 

  5. Zohuri GH, Albahily K, Schwerdtfeger ED, Miller SA (2012) 3.21 - metallocene alkene polymerization catalysts. Polym Sci A Comprehensive Ref 3:673–697

    Article  CAS  Google Scholar 

  6. Nicholas CP (2017) Applications of light olefin oligomerization to the production of fuels and chemicals. Appl Catal A Gen 543:82–97

    Article  CAS  Google Scholar 

  7. Nifant’ev I, Ivchenko P (2020) Fair look at coordination oligomerization of higher α-olefins. Polymers 12:1082

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nifant’ev I, Ivchenko P, Tavtorkin A, Vinogradov A, Vinogradov A (2017) Non-traditional Ziegler-Natta catalysis in α-olefin transformations: reaction mechanisms and product design. Pure Appl Chem 89:1017

    Article  Google Scholar 

  9. Kaminsky W, Sinn H (2013). In: Kaminsky W (ed) Polyolefins: 50 years after Ziegler and Natta II. Springer, Berlin

    Google Scholar 

  10. Janiak C (2006) Metallocene and related catalysts for olefin, alkyne and silane dimerization and oligomerization. Coord Chem Rev 250:66–94

    Article  CAS  Google Scholar 

  11. Resconi L, Cavallo L, Fait A, Piemontesi F (2000) Selectivity in propene polymerization with metallocene catalysts. Chem Rev 100:1253–1346

    Article  PubMed  CAS  Google Scholar 

  12. Alt HG (2006) Metallocene complexes as catalysts for olefin polymerization. Coord Chem Rev 250:1

    Article  CAS  Google Scholar 

  13. Pasynkiewicz S (1990) Alumoxanes: synthesis, structures, complexes and reactions. Polyhedron 9:429–453

    Article  CAS  Google Scholar 

  14. Zijlstra HS, Harder S (2015) Methylalumoxane—history, production, properties, and applications. Eur J Inorg Chem 2015:19–43

    Article  CAS  Google Scholar 

  15. Hirvi JT, Bochmann M, Severn JR, Linnolahti M (2014) Formation of octameric methylaluminoxanes by hydrolysis of trimethylaluminum and the mechanisms of catalyst activation in single-site α-olefin polymerization catalysis. Chem Phys Chem 15:2732–2742

    Article  PubMed  CAS  Google Scholar 

  16. Collins S, Linnolahti M, Zamora MG, Zijlstra HS, Rodríguez Hernández MT, Perez-Camacho O (2017) Activation of Cp2ZrX2 (X = Me, Cl) by methylaluminoxane as studied by electrospray ionization mass spectrometry: relationship to polymerization catalysis. Macromolecules 50:8871–8884

    Article  CAS  Google Scholar 

  17. Zijlstra HS, Joshi A, Linnolahti M, Collins S, McIndoe JS (2019) Interaction of neutral donors with methylaluminoxane. Eur J Inorg Chem 2019:2346–2355

    Article  CAS  Google Scholar 

  18. Kim I, Choi C-S (1999) The effect of AlR3 on propylene polymerization by rac-(EBI)Zr(NMe2)2/AlR3/[CPh3][B(C6F5)4] catalyst. J Polym Sci A Polym Chem 37:1523–1539

    Article  CAS  Google Scholar 

  19. Bravaya NM, Panin AN, Faingol’d EE, Babkina ON, Razavi A (2010) C2-symmetry dimethylated zirconocenes activated with triisobutyl aluminum as effective homogeneous catalysts for copolymerization of olefins. J Polym Sci A Polym Chem 48:2934–2941

    Article  CAS  Google Scholar 

  20. Ali A, Muhammad N, Hussain S, Jamil MI, Uddin A, Aziz T, Tufail MK, Guo Y, Wei T, Rasool G, Zhiqiang F, Guo L (2021) Kinetic and thermal study of ethylene and propylene homo polymerization catalyzed by ansa-zirconocene activated with alkylaluminum/borate: effects of alkylaluminum on polymerization kinetics and polymer structure. Polymers 13:268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Resconi L, Piemontesi F, Franciscono G, Abis L, Fiorani T (1992) Olefin polymerization at bis(pentamethylcyclopentadienyl)zirconium and-hafnium centers: chain-transfer mechanisms. J Am Chem Soc 114:1025–1032

    Article  CAS  Google Scholar 

  22. Chirik PJ, Bercaw JE (2005) Cyclopentadienyl and olefin substituent effects on insertion and β-hydrogen elimination with group 4 metallocenes. kinetics, mechanism, and thermodynamics for zirconocene and hafnocene alkyl hydride derivatives. Organometallics 24:5407–5423

    Article  CAS  Google Scholar 

  23. Parfenova LV, Kovyazin PV, Tyumkina TV, Khalilov LM, Dzhemilev UM (2018). In: Davarnejad R, Sajjadi B (eds) Alkenes. InTech, London

    Google Scholar 

  24. Nifant’ev IE, Vinogradov AA, Vinogradov AA, Ivchenko PV (2016) Zirconocene-catalyzed dimerization of 1-hexene: two-stage activation and structure–catalytic performance relationship. Catal Commun 79:6–10

    Article  Google Scholar 

  25. Nifant’ev IE, Vinogradov AA, Vinogradov AA, Sedov IV, Dorokhov VG, Lyadov AS, Ivchenko PV (2018) Structurally uniform 1-hexene, 1-octene, and 1-decene oligomers: zirconocene/MAO-catalyzed preparation, characterization, and prospects of their use as low-viscosity low-temperature oil base stocks. Appl Catal A Gen 549:40–50

    Article  Google Scholar 

  26. Nifant’ev IE, Vinogradov AA, Vinogradov AA, Churakov AV, Ivchenko PV (2018) Synthesis of zirconium(III) complex by reduction of O[SiMe25-C5H4)]2ZrCl2 and its selectivity in catalytic dimerization of hex-1-ene. Mendeleev Commun 28:467–469

    Article  Google Scholar 

  27. Nifant’ev IE, Vinogradov AA, Vinogradov AA, Bezzubov SI, Ivchenko PV (2017) Catalytic oligomerization of α-olefins in the presence of two-stage activated zirconocene catalyst based on 6,6-dimethylfulvene ‘dimer.’ Mendeleev Commun 27:35–37

    Article  Google Scholar 

  28. Nifant’ev I, Vinogradov A, Vinogradov A, Karchevsky S, Ivchenko P (2019) Zirconocene-catalyzed dimerization of α-olefins: DFT modeling of the Zr-Al binuclear reaction mechanism. Molecules 24:3565

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nifant’ev I, Bagrov V, Vinogradov A, Vinogradov A, Ilyin S, Sevostyanova N, Batashev S, Ivchenko P (2020) Methylenealkane-based low-viscosity ester oils: synthesis and outlook. Lubricants 8:50

    Article  Google Scholar 

  30. Nifant’ev IE, Vinogradov AA, Vinogradov AA, Churakov AV, Bagrov VV, Kashulin IA, Roznyatovsky VA, Grishin YK, Ivchenko PV (2019) The catalytic behavior of heterocenes activated by TIBA and MMAO under a low Al/Zr ratios in 1-octene polymerization. Appl Catal A Gen 571:12–24

    Article  Google Scholar 

  31. Nifant’ev I, Vinogradov A, Vinogradov A, Karchevsky S, Ivchenko P (2020) Experimental and theoretical study of zirconocene-catalyzed oligomerization of 1-octene. Polymers 12:1590

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nifant’ev IE, Vinogradov AA, Vinogradov AA, Bagrov VV, Churakov AV, Minyaev ME, Kiselev AV, Salakhov II, Ivchenko PV (2022) A competetive way to low-viscosity PAO base stocks via heterocene-catalyzed oligomerization of dec-1-ene. Mol Catal 529:112542

    Article  Google Scholar 

  33. Bryliakov KP, Talsi EP, Semikolenova NV, Zakharov VA, Brand J, Alonso-Moreno C, Bochmann M (2007) Formation and structures of cationic zirconium complexes in ternary systems rac-(SBI)ZrX2/AlBu3i/[CPh3][B(C6F5)4] (X= Cl, Me). J Organomet Chem 692:859–868

    Article  CAS  Google Scholar 

  34. Carr AG, Dawson DM, Thornton-Pett M, Bochmann M (1999) Cationic zirconocene hydrides: a new type of highly effective initiators for carbocationic polymerizations. Organometallics 18:2933–2935

    Article  CAS  Google Scholar 

  35. Götz C, Rau A, Luft G (2002) Ternary metallocene catalyst systems based on metallocene dichlorides and AlBu3i/[PhNMe2H][B(C6F5)4]: NMR investigations of the influence of Al/Zr ratios on alkylation and on formation of the precursor of the active metallocene species. J Mol Catal A Chem 184:95–110

    Article  Google Scholar 

  36. Baldwin SM, Bercaw JE, Brintzinger HH (2010) Cationic alkylaluminum-complexed zirconocene hydrides as participants in olefin polymerization catalysis. J Am Chem Soc 132:13969–13971

    Article  PubMed  CAS  Google Scholar 

  37. Baldwin SM, Bercaw JE, Henling LM, Day MW, Brintzinger HH (2011) Cationic alkylaluminum-complexed zirconocene hydrides: nmr-spectroscopic identification, crystallographic structure determination, and interconversion with other zirconocene cations. J Am Chem Soc 133:1805–1813

    Article  PubMed  CAS  Google Scholar 

  38. Joshi A, Zijlstra HS, Collins S, McIndoe JS (2020) Catalyst deactivation processes during 1-hexene polymerization. ACS Catal 10:7195–7206

    Article  CAS  Google Scholar 

  39. González-Hernández R, Chai J, Charles R, Pérez-Camacho O, Kniajanski S, Collins S (2006) Catalytic system for homogeneous ethylene polymerization based on aluminohydride−zirconocene complexes. Organometallics 25:5366–5373

    Article  Google Scholar 

  40. Yang X, Stern CL, Marks TJ (1992) Cationic metallocene polymerization catalysts. synthesis and properities of the first base-free zirconocene hydride. Angew Chem Int Ed 31:1375–1377

    Article  Google Scholar 

  41. Yang X, Stern CL, Marks TJ (1994) Cationic zirconocene olefin polymerization catalysts based on the organo-lewis acid tris(pentafluorophenyl)borane. a synthetic, structural, solution dynamic, and polymerization catalytic study. J Am Chem Soc 116:10015–10031

    Article  CAS  Google Scholar 

  42. Spence REvH, Parks DJ, Piers WE, MacDonald M-A, Zaworotko MJ, Rettig SJ (1995) Competing pathways in the reaction of bis(pentafluorophenyl)borane with bis(η5-cyclopentadienyl)dimethylzirconium: methane elimination versus methyl-hydride exchange and an example of pentacoordinate carbon. Angew Chem Int Ed 34:1230–1233

    Article  Google Scholar 

  43. Spence REvH, Piers WE, Sun Y, Parvez M, MacGillivray LR, Zaworotko MJ (1998) Mechanistic aspects of the reactions of bis(pentafluorophenyl)borane with the dialkyl zirconocenes Cp2ZrR2 (R = CH3, CH2SiMe3, and CH2C6H5). Organometallics 17:2459–2469

    Article  CAS  Google Scholar 

  44. Sun Y, Spence REvH, Piers WE, Parvez M, Yap GPA (1997) Intramolecular ion−ion interactions in zwitterionic metallocene olefin polymerization catalysts derived from “Tucked-In” catalyst precursors and the highly electrophilic boranes XB(C6F5)2 (X = H, C6F5). J Am Chem Soc 119:5132–5143

    Article  CAS  Google Scholar 

  45. Arndt P, Baumann W, Spannenberg A, Rosenthal U, Burlakov VV, Shur VB (2003) Reactions of titanium and zirconium derivatives of bis(trimethylsilyl)acetylene with tris(pentafluorophenyl)borane: a titanium(iii) complex of an alkynylboranate. Angew Chem Int Ed 42:1414–1418

    Article  CAS  Google Scholar 

  46. Arndt P, Jäger-Fiedler U, Klahn M, Baumann W, Spannenberg A, Burlakov VV, Rosenthal U (2006) Formation of zirconocene fluoro complexes: no deactivation in the polymerization of olefins by the contact-ion-pair catalysts [Cp′2ZrR]+[RB(C6F5)3]. Angew Chem Int Ed 45:4195–4198

    Article  CAS  Google Scholar 

  47. Al-Humydi A, Garrison JC, Mohammed M, Youngs WJ, Collins S (2005) Propene polymerization using ansa-metallocenium ions: Catalyst deactivation processes during monomer consumption and molecular structures of the products formed. Polyhedron 24:1234–1249

    Article  CAS  Google Scholar 

  48. Bryliakov KP, Talsi EP, Voskoboynikov AZ, Lancaster SJ, Bochmann M (2008) Formation and structures of hafnocene complexes in MAO- and AlBui3/CPh3[B(C6F5)4]-activated systems. Organometallics 27:6333–6342

    Article  CAS  Google Scholar 

  49. Panin AN, Dzhabieva ZM, Nedorezova PM, Tsvetkova VI, Saratovskikh SL, Babkina ON, Bravaya NM (2001) Triisobutylaluminum as cocatalyst for zirconocenes. II. Triisobutylaluminum as a component of a cocatalyst system and as an effective cocatalyst for olefin polymerization derived from dimethylated zirconocenes. J Polym Sci Part A Polym Chem 39:1915–1930

    Article  CAS  Google Scholar 

  50. Nanda RK, Wallbridge MGH (1964) Dicyclopentadienylzirconium diborohydride. Inorg Chem 3:1798

    Article  Google Scholar 

  51. James BD, Nanda RK, Walbridge MGH (1967) Reactions of lewis bases with tetrahydroborate derivatives of the Group IVa elements. Preparation of new zirconium hydride species. Inorg Chem 1967:1979–1983

    Article  Google Scholar 

  52. Sasnovskaya VD, Titov LV, Rosolovskii VYa, (1984) Biscyclopentadienylzirconium(IV) hydridoalumohydride, its reaction with diborane and the synthesis of [(η5-C5H5)2ZrIV(BH4){H2Al(BH4)2}]. Bull Acad Sci USSR, Div Chem Sci 33:1297–1301

    Article  Google Scholar 

  53. Babushkin DE, Panchenko VN, Timofeeva MN, Zakharov VA, Brintzinger HH (2008) Novel zirconocene hydride complexes in homogeneous and in SiO2-supported olefin-polymerization catalysts modified with diisobutylaluminum hydride or triisobutylaluminum. Macromol Chem Phys 209:1210–1219

    Article  CAS  Google Scholar 

  54. Bryliakov KP, Semikolenova NV, Panchenko VN, Zakharov VA, Brintzinger HH, Talsi EP (2006) Activation of rac-Me2Si(ind)2ZrCl2 by methylalumoxane modified by aluminum alkyls: an EPR spin-probe, 1H NMR, and polymerization study. Macromol Chem Phys 207:327–335

    Article  CAS  Google Scholar 

  55. Babushkin DE, Brintzinger HH (2007) Modification of methylaluminoxane-activated ansa-zirconocene catalysts with triisobutylaluminum—transformations of reactive cations studied by NMR spectroscopy. Chem Eur J 13:5294–5299

    Article  PubMed  CAS  Google Scholar 

  56. Comparán-Padilla VE, Pérez-Berúmen CM, Cadenas-Pliego G, Rodríguez-Hernández MT, Collins S, Pérez-Camacho O (2017) Evaluation of catalyst leaching in silica supported zirconocene alumino hydride catalysts. Can J Chem Eng 95:1124–1132

    Article  Google Scholar 

  57. González R, Morales E, García M, Revilla J, Charles R, Collins S, Cadenas G, Lugo L, Pérez O (2009) Heterogeneous polymerization of ethylene and 1-hexene with Me3SiCp2ZrH3AlH2/SiO2 activated with MAO. Macromol Symp 283:96–102

    Article  Google Scholar 

  58. Padilla-Gutiérrez B, Ventura-Hunter C, García-Zamora M, Collins S, Estrada-Ramírez AN, Pérez-Camacho O (2017) Zirconocene aluminohydride-methylaluminoxane clathrates for ethylene polymerization in slurry. Macromol Symp 374:1600139

    Article  Google Scholar 

  59. MirandaCC COP, Colunga GM, Zamora MG, Hernández MTR, Padilla VC, Collins S (2023) In situ polymerization of ethylene with functionalized multiwalled carbon nanotubes using a zirconocene aluminohydride system in solution. Polym Eng Sci 63:959–971

    Article  CAS  Google Scholar 

  60. Parfenova LV, Kovyazin PV, Bikmeeva AKh (2020) Bimetallic Zr, Zr-hydride complexes in zirconocene catalyzed alkene dimerization. Molecules 25:2216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Parfenova LV, Kovyazin PV, Bikmeeva AKh, Palatov ER (2021) Catalytic systems based on Cp2ZrX2 (X = Cl, H), organoaluminum compounds and perfluorophenylboranes: role of Zr, Zr- and Zr, Al-hydride intermediates in alkene dimerization and oligomerization. Catalysts 11:39

    Article  CAS  Google Scholar 

  62. Kovyazin PV, Bikmeeva AKh, Islamov DN, Yanybin VM, Tyumkina TV, Parfenova LV (2021) Ti group metallocene-catalyzed synthesis of 1-hexene dimers and tetramers. Molecules 26:2775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Parfenova LV, Kovyazin PV, Bikmeeva AKh, Palatov ER, Ivchenko PV, Nifant’ev IE, Khalilov LM, (2023) Catalytic properties of zirconocene-based systems in 1-hexene oligomerization and structure of metal hydride reaction centers. Molecules 28:2420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Freidlina RK, Nesmeyanov BEM, AN, (1961) The synthesis of mixed pincerlike cyclopentadienyl compounds of zirconium. Dokl Acad Nauk SSSR 138:1369–1372

    CAS  Google Scholar 

  65. Schwemmlein H, Brintzinger HH (1983) ansa-Metallocene derivatives: V. Synthesis of tetramethylethylene-bridged titanocene and zirconocene derivatives via reductive fulvene coupling. J Organomet Chem 254:69

    Article  Google Scholar 

  66. Reynolds LT, Wilkinson G (1959) Some methylcyclopentadienyl-metal compounds. J Inorg Nucl Chem 9:86–92

    Article  Google Scholar 

  67. Nifantev IE, Ivchenko PV (1997) Synthesis of zirconium and hafnium ansa-metallocenes via transmetalation of dielement-substituted bis(cyclopentadienyl) and bis(indenyl) ligands. Organometallics 16:713–715

    Article  CAS  Google Scholar 

  68. Shoer LI, Gell KI, Schwartz J (1977) Mixed-metal hydride complexes containing Zr-H-Al bridges. synthesis and relation to transition-metal-catalyzed reactions of aluminum hydrides. J Organomet Chem 136:c19–c22

    Article  CAS  Google Scholar 

  69. Parfenova LV, Pechatkina SV, Khalilov LM, Dzhemilev UM (2005) Mechanism of Cp2ZrCl2-catalyzed olefin hydroalumination by alkylalanes. Russ Chem Bull 54:316–327

    Article  CAS  Google Scholar 

  70. Parfenova LV, Vil’danova RF, Pechatkina SV, Khalilov LM, Dzhemilev UM (2007) New effective reagent [Cp2ZrH2·ClAlEt2]2 for alkene hydrometallation. J Organomet Chem 692:3424–3429

    Article  CAS  Google Scholar 

  71. Baldwin SM, Bercaw JE, Brintzinger HH (2008) Alkylaluminum-complexed zirconocene hydrides: identification of hydride-bridged species by NMR spectroscopy. J Am Chem Soc 130:17423–17433

    Article  PubMed  CAS  Google Scholar 

  72. Parfenova LV, Kovyazin PV, Nifant’ev IE, Khalilov LM, Dzhemilev UM (2015) Role of Zr, Al hydride intermediate structure and dynamics in alkene hydroalumination with XAlBui2 (X = H, Cl, Bui), catalyzed by Zr η5-complexes. Organometallics 34:3559–3570

    Article  CAS  Google Scholar 

  73. Tyumkina TV, Islamov DN, Kovyazin PV, Parfenova LV (2021) Chain and cluster models of methylaluminoxane as activators of zirconocene hydride, alkyl and metallacyclopropane intermediates in alkene transformations. Mol Catal 512:111768

    Article  CAS  Google Scholar 

  74. Parfenova LV, Kovyazin PV, Tyumkina TV, Islamov DN, Lyapina AR, Karchevsky SG, Ivchenko PV (2017) Reactions of bimetallic Zr, Al- hydride complexes with methylaluminoxane: NMR and DFT study. J Organomet Chem 851:30–39

    Article  CAS  Google Scholar 

  75. Nishihara Y, Ishida T, Huo Sh, Takahashi T (1997) Preparation and reactions of Cp2HfRCl, Cp2HfRR′ and hafnacyclopent-2-enes. J Organomet Chem 547:209–216

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The structural studies of compounds were carried out at the Center for Collective Use “Agidel” at the Institute of Petrochemistry and Catalysis, Russian Academy of Sciences.

Funding

This research was funded by the Russian Science Foundation, grant number 22-23-00818.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and agreed to the published version of the manuscript. LVP—conceptualization. PVK—methodology. LVP, PVK and AKB—validation. PVK—formal analysis. PVK, AKB and ERP—investigation. LVP, PVK, PVI and IEN—data curation. PVK—writing—original draft preparation. LVP—writing—review and editing, visualization, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Lyudmila V. Parfenova.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3824 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parfenova, L.V., Kovyazin, P.V., Bikmeeva, A.K. et al. Activation of metallocene hydride intermediates by methylaluminoxane in alkene dimerization and oligomerization. Reac Kinet Mech Cat 137, 269–286 (2024). https://doi.org/10.1007/s11144-023-02540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02540-7

Keywords

Navigation