Skip to main content
Log in

Metal–organic framework-derived cobalt nanoparticles modified nitrogen-doped porous carbon hybrids for efficient hydrogenation and one-pot reductive acetylation of nitroarenes

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Herein, a series of cobalt nanoparticles embedded in nitrogen-doped porous carbon catalyst (Co@NPC) was prepared through the pyrolysis of tetragonal Co-based metal–organic framework which consisted of Co centers and benzimdazole linkers. Due to large BET specific surface area (389.41 m2/g), abundant metallic Co content (39.3%), small Co nanoparticle size and high pyridinic-N content, the as-obtained Co@NPC-700 catalyst exhibited superior catalytic performance for the hydrogenation and one-pot reductive acetylation of nitrobenzene. The high 99.80% conversion of nitrobenzene and 99.56% yield of aniline were acquired in the catalytic hydrogenation of nitrobenzene with hydrazine hydrate at 80 °C for 2 h. Simultaneously, the above catalyst showed high conversion (87.2%) and selectivity (95.3%) for the one-pot reductive acetylation of nitrobenzene in the presence of phenyl silane at room temperature. Additionally, Co@NPC-700 exhibited excellent activities for the catalytic hydrogenation and one-pot reductive acetylation of other nitroarenes as well as good recyclability. This work offered a facile approach to prepare metallic Co loaded on porous carbons, serving as efficient catalysts for catalytic reductive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Downing R, Kunkeler P, Bekkum H (1997) Catal Today 37:121

    Article  CAS  Google Scholar 

  2. Blaser H, Steriner H, Studer M (2009) ChemCatChem 1:210

    Article  CAS  Google Scholar 

  3. Serna P, Corma A (2015) ACS Catal 5:7114

    Article  CAS  Google Scholar 

  4. Junge K, Schroder K, Beller M (2011) Chem Commun 47:4849

    Article  CAS  Google Scholar 

  5. Corma A, González-Arellano C, Iglesias M (2009) Appl Catal A 356:99

    Article  CAS  Google Scholar 

  6. Uberman P, García C, Rodríguez J et al (2017) Green Chem 19:739

    Article  CAS  Google Scholar 

  7. Harraz F, El-Hout S, Killa H et al (2012) J Catal 286:184

    Article  CAS  Google Scholar 

  8. Nandi D, Siwal S, Choudhary M et al (2016) Appl Catal A 523:31

    Article  CAS  Google Scholar 

  9. Leng F, Gerber I, Lecante P et al (2016) ACS Catal 6:6018

    Article  CAS  Google Scholar 

  10. Yang Y, Wang M, Liu W et al (2019) Green Chem 21:704

    Article  CAS  Google Scholar 

  11. Zhao Z, Yang H, Li Y et al (2014) Green Chem 16:1274

    Article  CAS  Google Scholar 

  12. Shu Y, He S, Xie L et al (2017) Appl Surf Sci 396:339

    Article  CAS  Google Scholar 

  13. Jagadeesh R, Wienhöfer G, Westerhaus F et al (2011) Chem Commun 47:10972

    Article  CAS  Google Scholar 

  14. Ma X, Zhou Y, Liu H et al (2016) Chem Commun 52:7719

    Article  CAS  Google Scholar 

  15. Zhu Y, Yang S, Cao C et al (2018) Inorg Chem Front 5:1094

    Article  CAS  Google Scholar 

  16. Yang S, Peng L, Sun D et al (2018) Chemsuschem 11:3131

    Article  PubMed  CAS  Google Scholar 

  17. Huang H, Wang X, Sheng Y et al (2018) RSC Adv 8:8898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wei Z, Wang J, Mao S (2015) ACS Catal 5:4783

    Article  CAS  Google Scholar 

  19. Song T, Ren P, Duan Y et al (2018) Green Chem 20:4629

    Article  CAS  Google Scholar 

  20. Wang K, Gao W, Jiang P et al (2019) Molecular Catal 465:43

    Article  CAS  Google Scholar 

  21. Duan Y, Song T, Dong X et al (2018) Green Chem 20:2821

    Article  CAS  Google Scholar 

  22. Yuan M, Zhang H, Yang C et al (2019) ChemCatChem 11:3327

    Article  CAS  Google Scholar 

  23. Chen S, Ling L, Jiang S et al (2020) Green Chem 22:5730

    Article  CAS  Google Scholar 

  24. Sun X, Olivos-Suarez A, Oar-Arteta L et al (2017) ChemCatChem 9:1854

    Article  CAS  Google Scholar 

  25. Xu Y, Shan W, Liang X et al (2020) Ind Eng Chem Res 59:4367

    Article  CAS  Google Scholar 

  26. Yang S, Li B, Wan X et al (2007) J Am Chem Soc 129:6066

    Article  PubMed  CAS  Google Scholar 

  27. Ekoue-Kovi K, Wolf C (2008) Chem Eur J 14:6302

    Article  PubMed  CAS  Google Scholar 

  28. Lanigan R, Starkov P, Sheppard T (2013) J Org Chem 78:4512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zeynizadeh B, Aminzadeh F, Mousavi H (2019) Green Process Synth 8:742

    Article  CAS  Google Scholar 

  30. Baruah R (2000) Indian J Chem B 39:300

    Google Scholar 

  31. Kantam M, Reddy R, Srinivas K et al (2012) J Mol Catal A Chem 355:96

    Article  CAS  Google Scholar 

  32. Lee K, Kim J, Kim J (2002) Bull Korean Chem Soc 23:1359

    Article  CAS  Google Scholar 

  33. Bilakanti V, Gutta N, Velisoju V et al (2020) React Kinet Mech Cat 130:347

    Article  CAS  Google Scholar 

  34. Chen Y, Wang C, Wu Z et al (2015) Adv Mater 27:5010

    Article  PubMed  CAS  Google Scholar 

  35. Yu H, Shang L, Bian T et al (2016) Adv Mater 28:5080

    Article  PubMed  CAS  Google Scholar 

  36. Xia B, Yan Y, Li N et al (2016) Nat Energy 1:15006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We genuinely appreciate financial support by Tianjin Technical Innovation Guidance Special Project (Grant Numbers: 22YDTPJC00080) and Tianjin Undergraduate Training Program for Innovation and Entrepreneurship (Grant Numbers: 202110060030).

Funding

Tianjin Technical Innovation Guidance Special Project, 22YDTPJC00080, Manman Mu, Tianjin Undergraduate Training Program for Innovation and Entrepreneurship, 202110060030, Peng Luo

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manman Mu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1693 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, P., Chen, J. & Mu, M. Metal–organic framework-derived cobalt nanoparticles modified nitrogen-doped porous carbon hybrids for efficient hydrogenation and one-pot reductive acetylation of nitroarenes. Reac Kinet Mech Cat 137, 195–208 (2024). https://doi.org/10.1007/s11144-023-02532-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02532-7

Keywords

Navigation