Skip to main content
Log in

Degradation of paracetamol by sulfate radicals using UVA-irradiation/heat activated peroxydisulfate: kinetics and optimization using Box–Behnken design

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The feasibility οf cοmbining UV and Heat activated perοxydisulfate (PDS) fοr the οxidatiοn οf paracetamοl (PCT) was studied in this study. A series οf cοmparative degradatiοn experiments in different systems, as well as the influence οf οperating parameters οn UV-Heat/PDS prοcess efficiency were investigated. The UV-Heat/PDS synergistic system demοnstrated superiοr PCT degrading perfοrmances in cοmparisοn tο the UV/PDS and Heat/PDS systems. In the UV-Heat/PDS system, the degree οf synergistic effect between UV and heat was calculated tο be 1.5. In additiοn, an increase in reactiοn temperature and perοxydisulfate cοncentratiοn, as well as a decrease in PCT initial cοncentratiοns, was fοund tο imprοve PCT degradatiοn efficiency. Under all studied cοnditiοns, the PCT degradatiοn fοllοwed a pseudο-first οrder kinetics pattern. Apparent activatiοn energy οf 57 kJ/mοl was calculated frοm the cοrrespοnding apparent rate cοnstants in the range 30–60 °C. The effect οf the parameters that directly affect the UV-Heat/PDS prοcess was evaluated by emplοying Bοx–Behnken design (BDD). The secοnd οrder mοdel οbtained by BBD led tο the fοllοwing οptimal cοnditiοns: 5.8 mM ≤\({[\text{PDS}]}_{0}\)  ≤ 10 mM, 45.75 °C ≤ T ≤ 60 °C and \({[\text{PCT}]}_{0}\) = 0.033 mM. Under these οptimal cοnditiοns, the maximum degradatiοn yield achieved was 93%. Accοrding tο these results, the UV-Heat/PDS synergistic system is an efficient technique fοr remοving PCT frοm aqueοus media. These pοsitive results have tο be cοnfirmed οn οther recalcitrant pharmaceutical cοmpοunds and in real cοnditiοns.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Otoo BA, Amoabeng IA, Darko G, Borquaye LS (2022) Antibiotic and analgesic residues in the environment—occurrence and ecological risk study from the Sunyani municipality, Ghana. Toxicol Rep 9:1491–1500. https://doi.org/10.1016/j.toxrep.2022.07.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299

    Article  PubMed  CAS  Google Scholar 

  3. Zhang Q, Cheng S, Xia H, Zhang L, Zhou J, Li C, Shu J, Jiang X (2019) Paracetamol degradation performance and mechanisms using microwave-assisted heat-activated persulfate in solutions. Water Air Soil Pollut. https://doi.org/10.1007/s11270-019-4286-7

    Article  Google Scholar 

  4. Bu Q, Shi X, Yu G, Huang J, Wang B (2016) Assessing the persistence of pharmaceuticals in the aquatic environment: challenges and needs. Emerg Contam 2:145–147. https://doi.org/10.1016/j.emcon.2016.05.003

    Article  Google Scholar 

  5. Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3:1–16. https://doi.org/10.1016/j.emcon.2016.12.004

    Article  Google Scholar 

  6. Hernández-Tenorio R, González-Juárez E, Guzmán-Mar JL, Hinojosa-Reyes L, Hernández-Ramírez A (2022) Review of occurrence of pharmaceuticals worldwide for estimating concentration ranges in aquatic environments at the end of the last decade. J Hazard Mater Adv 8:100172. https://doi.org/10.1016/j.hazadv.2022.100172

    Article  CAS  Google Scholar 

  7. Kadji H, Yahiaoui I, Garti Z, Amrane A, Aissani-Benissad F (2021) Kinetic degradation of amoxicillin by using the electro-Fenton process in the presence of a graphite rods from used batteries. Chin J Chem Eng 32:183–190. https://doi.org/10.1016/j.cjche.2020.08.032

    Article  CAS  Google Scholar 

  8. da Silva TL, Costa CSD, da Silva MGC, Vieira MGA (2022) Overview of non-steroidal anti-inflammatory drugs degradation by advanced oxidation processes. J Clean Prod 346:131226. https://doi.org/10.1016/j.jclepro.2022.131226

    Article  CAS  Google Scholar 

  9. Saravanan A, Deivayanai VC, Kumar PS, Rangasamy G, Hemavathy RV, Harshana T, Gayathri N, Alagumalai K (2022) A detailed review on advanced oxidation process in treatment of wastewater: mechanism, challenges and future outlook. Chemosphere 308:136524. https://doi.org/10.1016/j.chemosphere.2022.136524

    Article  PubMed  CAS  Google Scholar 

  10. Ikhlef-Taguelmimt T, Hamiche A, Yahiaoui I, Bendellali T, Lebik-Elhadi H, Ait-Amar H, Aissani-Benissad F (2020) Tetracycline hydrochloride degradation by heterogeneous photocatalysis using TiO2(P25) immobilized in biopolymer (chitosan) under UV irradiation. Water Sci Technol 82:1570–1578. https://doi.org/10.2166/wst.2020.432

    Article  PubMed  CAS  Google Scholar 

  11. Moreira VR, Guimaraes RN, Moser PB, Santos LVS, de Paula EC, Lebron YAR, Silva AFR, Casella GS, Amaral MCS (2023) Restrictions in water treatment by conventional processes (coagulation, flocculation, and sand-filtration) following scenarios of dam failure. J Water Process Eng 51:103450. https://doi.org/10.1016/j.jwpe.2022.103450

    Article  Google Scholar 

  12. Nunes B, Antunes SC, Santos J, Martins L, Castro BB (2014) Toxic potential of paracetamol to freshwater organisms: a headache to environmental regulators? Ecotoxicol Environ Saf 107:178–185. https://doi.org/10.1016/j.ecoenv.2014.05.027

    Article  PubMed  CAS  Google Scholar 

  13. Hassani A, Scaria J, Ghanbari F, Nidheesh PV (2023) Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: a review on relevant activation mechanisms, performance, and perspectives. Environ Res 217:114789. https://doi.org/10.1016/j.envres.2022.114789

    Article  PubMed  CAS  Google Scholar 

  14. Li S, Wu Y, Zheng H, Li H, Zheng Y, Nan J, Ma J, Nagarajan D, Chang JS (2023) Antibiotics degradation by advanced oxidation process (AOPs): recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products. Chemosphere 311:136977. https://doi.org/10.1016/j.chemosphere.2022.136977

    Article  PubMed  CAS  Google Scholar 

  15. Yahiaoui I, Aissani-Benissad F, Fourcade F, Amrane A (2013) Removal of tetracycline hydrochloride from water based on direct anodic oxidation (Pb/PbO2 electrode) coupled to activated sludge culture. Chem Eng J 221:418–425. https://doi.org/10.1016/j.cej.2013.01.091

    Article  CAS  Google Scholar 

  16. Malhotra M, Poonia K, Singh P, Khan AAP, Thakur P, Van Le Q, Helmy ET, Ahamad T, Nguyen VH, Thakur S, Raizada P (2023) An overview of improving photocatalytic activity of MnO2 via the Z-scheme approach for environmental and energy applications. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2023.104945

    Article  Google Scholar 

  17. Nguyen VH, Nguyen BS, Jin Z, Shokouhimehr M, Jang HW, Hu C, Singh P, Raizada P, Peng W, Lam SS, Changlei Xia C, Nguyen CC, Kim SY, Le QV (2020) Towards artificial photosynthesis: sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. J Chem Eng 402:126184. https://doi.org/10.1016/j.cej.2020.126184

    Article  CAS  Google Scholar 

  18. Kumar R, Sudhaik A, Sonu, Nguyen VH, Le QV, Ahamad T, Thakur S, Kumar N, Hussain CM, Singh P, Raizada P (2023) Graphene oxide modified K, P co-doped g-C3N4 and CoFe2O4 composite for photocatalytic degradation of antibiotics. J Taiwan Inst Chem Eng 150:105077. https://doi.org/10.1016/j.jtice.2023.105077

    Article  CAS  Google Scholar 

  19. Dutta V, Sharma S, Raizada P, Thakur VK, Khan AAP, Saini V, Asiri AM, Pardeep Singh P (2021) An overview on WO3 based photocatalyst for environmental remediation. J Environ Chem Eng 9:105018. https://doi.org/10.1016/j.jece.2020.105018

    Article  CAS  Google Scholar 

  20. Liu Z, Ren X, Duan X, Sarmah AK, Zhao X (2023) Remediation of environmentally persistent organic pollutants (POPs) by persulfates oxidation system (PS): a review. Sci Total Environ 863:160818. https://doi.org/10.1016/j.scitotenv.2022.160818

    Article  PubMed  CAS  Google Scholar 

  21. Hasija V, Nguyen VH, Kumar A, Raizada P, Krishnan V, Khan AAP, Singh P, Lichtfouse E, Wang C, Huong P (2021) Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: a review. J Hazard Mater 413:125324

    Article  PubMed  CAS  Google Scholar 

  22. Ledjeri A, Yahiaoui I, Kadji H, Aissani-Benissad F, Amrane A, Fourcade F (2017) Combination of the electro/Fe3+/peroxydisulfate (PDS) process with activated sludge culture for the degradation of sulfamethazine. Environ Toxicol Pharmacol 53:34–39. https://doi.org/10.1016/j.etap.2017.04.022

    Article  PubMed  CAS  Google Scholar 

  23. Ye Y, Wan J, Li Q, Huang Y, Pan F, Xia D (2021) Catalytic oxidation of dyeing wastewater by copper oxide activating persulfate: performance, mechanism and application. Int J Environ Res 15:1–10. https://doi.org/10.1007/s41742-020-00296-9

    Article  CAS  Google Scholar 

  24. Lebik-Elhadi H, Frontistis Z, Ait-Amar H, Madjene F, Mantzavinos D (2020) Degradation of pesticide thiamethoxam by heat–activated and ultrasound–activated persulfate: effect of key operating parameters and the water matrix. Process Saf Environ Prot 134:197–207. https://doi.org/10.1016/j.psep.2019.11.041

    Article  CAS  Google Scholar 

  25. Silveira JE, Zazo JA, Casas JA (2019) Coupled heat-activated persulfate—electrolysis for the abatement of organic matter and total nitrogen from landfill leachate. Waste Manag 97:47–51. https://doi.org/10.1016/j.wasman.2019.07.037

    Article  PubMed  CAS  Google Scholar 

  26. Dibene K, Yahiaoui I, Yahia-Cherif L, Aitali S, Amrane A, Aissani-Benissad F (2020) Paracetamol degradation by photo-activated peroxydisulfate process (UV/PDS): kinetic study and optimization using central composite design. Water Sci Technol 82:1404–1415. https://doi.org/10.2166/wst.2020.412

    Article  PubMed  CAS  Google Scholar 

  27. Potakis N, Frontistis Z, Antonopoulou M, Konstantinou I, Mantzavinos D (2017) Oxidation of bisphenol A in water by heat-activated persulfate. J Environ Manag 195:125–132. https://doi.org/10.1016/j.jenvman.2016.05.045

    Article  CAS  Google Scholar 

  28. Yang R, Chang Q, Li N, Yang H (2022) Synergistically enhanced activation of persulfate for efficient oxidation of organic contaminants using a microscale zero-valent aluminum/Fe-bearing clay composite. Chem Eng J 433:133682. https://doi.org/10.1016/j.cej.2021.133682

    Article  CAS  Google Scholar 

  29. Wang D, Liu Y, Wang Q, Yang F, Liu J, Hu W, Zhang J, Wu Z (2022) Activation of peroxydisulfate via photothermal synergistic strategy for wastewater treatment: efficiency and mechanism. J Hazard Mater 436:129224. https://doi.org/10.1016/j.jhazmat.2022.129224

    Article  PubMed  CAS  Google Scholar 

  30. Ike IA, Linden KG, Orbell JD, Duke M (2018) Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem Eng J 338:651–669. https://doi.org/10.1016/j.cej.2018.01.034

    Article  CAS  Google Scholar 

  31. Dibene K, Yahiaoui I, Aitali S, Khenniche L, Amrane A, Aissani-Benissad F (2021) Central composite design applied to paracetamol degradation by heat-activated peroxydisulfate oxidation process and its relevance as a pretreatment prior to a biological treatment. Environ Technol 42:905–913. https://doi.org/10.1080/09593330.2019.1649308

    Article  PubMed  CAS  Google Scholar 

  32. Yang J, Zhu M, Dionysiou DD (2021) What is the role of light in persulfate-based advanced oxidation for water treatment? Water Res 189:116627. https://doi.org/10.1016/j.watres.2020.116627

    Article  PubMed  CAS  Google Scholar 

  33. Fu C, Yi X, Liu Y, Zhou H (2020) Cu2+ activated persulfate for sulfamethazine degradation. Chemosphere 257:127294. https://doi.org/10.1016/j.chemosphere.2020.127294

    Article  PubMed  CAS  Google Scholar 

  34. Wang S, Wu J, Lu X, Xu W, Gong Q, Ding J, Dan B, Xie P (2019) Removal of acetaminophen in the Fe2+/persulfate system: kinetic model and degradation pathways. Chem Eng J 358:1091–1100. https://doi.org/10.1016/j.cej.2018.09.145

    Article  CAS  Google Scholar 

  35. Lee Y, Lee S, Cui M, Ren Y, Park B, Ma J, Han Z, Khim J (2021) Activation of peroxodisulfate and peroxymonosulfate by ultrasound with different frequencies: impact on ibuprofen removal efficient, cost estimation and energy analysis. Chem Eng J 413:127487. https://doi.org/10.1016/j.cej.2020.127487

    Article  CAS  Google Scholar 

  36. Brienza M, Katsoyiannis IA (2017) Sulfate radical technologies as tertiary treatment for the removal of emerging contaminants from wastewater. Sustainability 9:1–18. https://doi.org/10.3390/su9091604

    Article  CAS  Google Scholar 

  37. Arvaniti OS, Bairamis F, Konstantinou I, Mantzavinos D, Frontistis Z (2021) Degradation of antihypertensive drug valsartan in water matrices by heat and heat/ultrasound activated persulfate: kinetics, synergy effect and transformation products. Chem Eng J Adv 4:100062. https://doi.org/10.1016/j.ceja.2020.100062

    Article  CAS  Google Scholar 

  38. Pirsaheb M, Hossaini H, Janjani H (2019) An overview on ultraviolet persulfate based advances oxidation process for removal of antibiotics from aqueous solutions: a systematic review. Desalin Water Treat 165:382–395. https://doi.org/10.5004/dwt.2019.24559

    Article  CAS  Google Scholar 

  39. Arvaniti OS, Ioannidi AA, Mantzavinos D, Frontistis Z (2022) Heat-activated persulfate for the degradation of micropollutants in water: a comprehensive review and future perspectives. J Environ Manag 318:115568. https://doi.org/10.1016/j.jenvman.2022.115568

    Article  CAS  Google Scholar 

  40. He L, Chen H, Wu L, Zhang Z, Ma Y, Zhu J, Liu J, Yan X, Li H, Yang L (2021) Synergistic heat/UV activated persulfate for the treatment of nanofiltration concentrated leachate. Ecotoxicol Environ Saf 208:111522. https://doi.org/10.1016/j.ecoenv.2020.111522

    Article  PubMed  CAS  Google Scholar 

  41. Sakulthaew C, Chokejaroenrat C, Satapanajaru T, Chirasatienpon T, Angkaew A (2020) Removal of 17β-estradiol using persulfate synergistically activated using heat and ultraviolet light. Water Air Soil Pollut 231:247

    Article  CAS  Google Scholar 

  42. Vaiano V, Sacco O, Matarangolo M (2018) Photocatalytic degradation of paracetamol under UV irradiation using TiO2-graphite composites. Catal Today 315:230–236. https://doi.org/10.1016/j.cattod.2018.02.002

    Article  CAS  Google Scholar 

  43. De Luna MDG, Veciana ML, Su CC, Lu MC (2012) Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell. J Hazard Mater 217–218:200–207. https://doi.org/10.1016/j.jhazmat.2012.03.018

    Article  PubMed  CAS  Google Scholar 

  44. Lin JC-T, de Luna MDG, Aranzamendez GL, Lu MC (2016) Degradation of cetaminophen via a K2S2O8-doped TiO2 photocatalyst under visible light irradiation. Chemosphere 155:388–394. https://doi.org/10.1016/j.chemosphere.2016.04.059

    Article  PubMed  CAS  Google Scholar 

  45. Deng J, Shao Y, Gao N, Deng Y, Tan C, Zhou S (2014) Zero-valent iron/persulfate(Fe0/PS) oxidation of acetaminophen in water. Int J Environ Sci Technol 11(4):881–890. https://doi.org/10.1007/s13762-013-0284-2

    Article  CAS  Google Scholar 

  46. Yahiaoui I, Aissani-Benissad F, Ait-Amar H (2010) Optimization of silver cementation yield in fixed bed reactor using factorial design and central composite design. Can J Chem Eng 88:1099–1106. https://doi.org/10.1002/cjce.20348

    Article  CAS  Google Scholar 

  47. Yahiaoui I, Belattaf A, Aissani-Benissad F, Yahia Cherif L (2011) Full factorial design applied to a biosorption of lead(II) ions from aqueous solution using Brewer’s yeast (Saccharomyces cerevisiae). J Chem Eng Data 56:3999–4005. https://doi.org/10.1021/je200267b

    Article  CAS  Google Scholar 

  48. Boudrahem F, Yahiaoui I, Saidi S, Yahiaoui K, Kaabache L, Zennache M, Aissani-Benissad F (2019) Adsorption of pharmaceutical residues on adsorbents prepared from olive stones using mixture design of experiments model. Water Sci Technol 80:998–1009. https://doi.org/10.2166/wst.2019.346

    Article  PubMed  CAS  Google Scholar 

  49. Assassi M, Madjene F, Harchouche S, Boulfiza H (2021) Photocatalytic treatment of crystal violet in aqueous solution: Box–Behnken optimization and degradation mechanism. Environ Prog Sustain Energy 40:e13702. https://doi.org/10.1002/ep.13702

    Article  CAS  Google Scholar 

  50. Madjene F, Assassi M, Chokri I, Enteghar T, Lebik H (2021) Optimization of photocatalytic degradation of rhodamine B using Box–Behnken experimental design: mineralization and mechanism. Water Environ Res 93:112–122. https://doi.org/10.1002/wer.1360

    Article  PubMed  CAS  Google Scholar 

  51. Ioannidi A, Arvaniti OS, Nika MC, Aalizadeh R, Thomaidis NS, Mantzavinos D, Frontistis Z (2022) Removal of drug losartan in environmental aquatic matrices by heat-activated persulfate: kinetics, transformation products and synergistic effects. Chemosphere 287:131952. https://doi.org/10.1016/j.chemosphere.2021.131952

    Article  PubMed  CAS  Google Scholar 

  52. Deng J, Shao Y, Gao N, Deng Y, Tan C, Zhou S (2014) Zero-valent iron/persulfate(Fe0/PS) oxidation acetaminophen in water. Int J Environ Sci Technol 11:881–890. https://doi.org/10.1007/s13762-013-0284-2

    Article  CAS  Google Scholar 

  53. Zhou T, Du J, Wang Z, Xiao G, Luo L, Faheem M, Ling H, Bao J (2022) Degradation of sulfamethoxazole by MnO2/heat-activated persulfate: kinetics, synergistic effect and reaction mechanism. Chem Eng J Adv 9:100200. https://doi.org/10.1016/j.ceja.2021.100200

    Article  CAS  Google Scholar 

  54. Duan X, Indrawirawan S, Kang J, Tian W, Zhang H, Duan X, Zhou X, Sun H, Wang S (2020) Synergy of carbocatalytic and heat activation of persulfate for evolution of reactive radicals toward metal-free oxidation. Catal Today 355:319–324. https://doi.org/10.1016/j.cattod.2019.02.051

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No financial support exists in this paper.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AH: Investigation, methodology, software, validation, writing-original draft, writing-review, editing. IY: Conceptualization, methodology, supervision, validation, writing-review & editing. LK: Software, writing-review & editing. AA: writing-review & editing. FA-B: writing-review & editing.

Corresponding author

Correspondence to Anissa Hamiche.

Ethics declarations

Competing interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamiche, A., Yahiaoui, I., Khenniche, L. et al. Degradation of paracetamol by sulfate radicals using UVA-irradiation/heat activated peroxydisulfate: kinetics and optimization using Box–Behnken design. Reac Kinet Mech Cat 137, 433–451 (2024). https://doi.org/10.1007/s11144-023-02530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02530-9

Keywords

Navigation