Skip to main content
Log in

A comparative study of acid-activated non-expandable kaolinite and expandable montmorillonite for their CO2 sequestration capacity

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This study aims to improve the pore volume and specific surface area of kaolinite (Kaol) and montmorillonite (Mt) through low-temperature acid treatment to address their limited adsorption capacity. Clay mineral samples underwent sulfuric acid activation at various concentrations and durations. SEM analysis indicated acid activation improved kaolinite pore structure, increasing specific surface area, while montmorillonite exhibited reduced grain size and higher porosity, resulting in greater pore volume and surface area. EDX analysis revealed changes in chemical composition, including a 10% increase in silica and a 13% reduction in aluminium in kaolinite, whereas montmorillonite exhibited a 13% aluminium increase and 9.5% higher silica content. Kaolinite’s XRD pattern remained unchanged, resisting 2.5 M acid activation, while montmorillonite displayed modified patterns, indicating interlayer conversion with increased acid concentration. BET analysis confirmed higher sulfuric acid concentration increased pore volume and surface area, while FTIR analysis showed stable Si–O stretching peaks with changing intensity after 8 h. Montmorillonite exhibited Al–OH and Mg–OH bands, decreasing with higher acid concentration, and Si–O–Fe and Si–O–Al bonds disappeared with acid activation. Thus, the results indicate significantly enhanced pore volume and specific surface area after acid activation, accelerating CO2 adsorption rates. This activation demonstrates a direct relationship between acid concentration and reaction time with clay minerals’ pore characteristics. These clay minerals can be used as adsorbents for CO2 in carbon capture technology, aiding the global goal of achieving ‘net zero’ emissions by 2050.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27

    Article  CAS  Google Scholar 

  2. Manabe S (2019) Role of greenhouse gas in climate change**. Tellus A Dyn Meteorol Oceanogr 71:1620078

    Article  Google Scholar 

  3. Minx JC, Lamb WF, Callaghan MW, Fuss S, Hilaire J, Creutzig F, Amann T, Beringer T, de Oliveira Garcia W, Hartmann J, Khanna T, Lenzi D, Luderer G, Nemet GF, Rogelj J, Smith P, Vicente Vicente JL, Wilcox J, del Mar Zamora Dominguez M (2018) Negative emissions—part 1: research landscape and synthesis. Environ Res Lett 13:063001

    Article  Google Scholar 

  4. Razmjoo A, Gakenia Kaigutha L, Vaziri Rad MA, Marzband M, Davarpanah A, Denai M (2021) A technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area. Renew Energy 164:46–57

    Article  CAS  Google Scholar 

  5. Minx JC, Lamb WF, Callaghan MW, Bornmann L, Fuss S (2017) Fast growing research on negative emissions. Environ Res Lett 12:035007

    Article  Google Scholar 

  6. Gür TM (2022) Carbon dioxide emissions, capture, storage and utilization: review of materials, processes and technologies. Prog Energy Combust Sci 89:100965

    Article  Google Scholar 

  7. Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5:7281–7305

    Article  CAS  Google Scholar 

  8. Pera-Titus M (2014) Porous inorganic membranes for CO2 capture: present and prospects. Chem Rev 114:1413–1492

    Article  PubMed  CAS  Google Scholar 

  9. Nemet GF, Callaghan MW, Creutzig F, Fuss S, Hartmann J, Hilaire J, Lamb WF, Minx JC, Rogers S, Smith P (2018) Negative emissions—part 3: innovation and upscaling. Environ Res Lett 13:063003

    Article  Google Scholar 

  10. Raganati F, Miccio F, Ammendola P (2021) Adsorption of carbon dioxide for post-combustion capture: a review. Energy Fuels 35:12845–12868

    Article  CAS  Google Scholar 

  11. Yamasaki A (2003) An overview of CO2 mitigation options for global warming-emphasizing CO2 sequestration options. J Chem Eng Jpn 36:361–375

    Article  CAS  Google Scholar 

  12. Yaumi AL, Bakar MZA, Hameed BH (2017) Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy 124:461–480

    Article  CAS  Google Scholar 

  13. Cinke M, Li J, Bauschlicher CW, Ricca A, Meyyappan M (2003) CO2 adsorption in single-walled carbon nanotubes. Chem Phys Lett 376:761–766

    Article  CAS  Google Scholar 

  14. Gray ML, Champagne KJ, Fauth D, Baltrus JP, Pennline H (2008) Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide. Int J Greenh Gas Control 2:3–8

    Article  CAS  Google Scholar 

  15. Su F, Lu C, Cnen W, Bai H, Hwang JF (2009) Capture of CO2 from flue gas via multiwalled carbon nanotubes. Sci Total Environ 407:3017–3023

    Article  PubMed  CAS  Google Scholar 

  16. Abd AA, Naji SZ, Hashim AS, Othman MR (2020) Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review. J Environ Chem Eng 8:104142

    Article  CAS  Google Scholar 

  17. Zhao P, Yin Y, Cheng W, Xu X, Yang D, Yuan W (2021) Development of facile synthesized mesoporous carbon composite adsorbent for efficient CO2 capture. J CO2 Util 50:101612

    Article  CAS  Google Scholar 

  18. Gil A, Santamaría L, Korili SA, Vicente MA, Barbosa LV, de Souza SD, Marçal L, de Faria EH, Ciuffi KJ (2021) A review of organic-inorganic hybrid clay based adsorbents for contaminants removal: synthesis, perspectives and applications. J Environ Chem Eng 9:105808

    Article  CAS  Google Scholar 

  19. Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55

    Article  CAS  Google Scholar 

  20. Cuéllar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102

    Article  Google Scholar 

  21. Sayari A, Belmabkhout Y, Serna-Guerrero R (2011) Flue gas treatment via CO2 adsorption. Chem Eng J 171:760–774

    Article  CAS  Google Scholar 

  22. Sai Bhargava Reddy M, Ponnamma D, Sadasivuni KK, Kumar B, Abdullah AM (2021) Carbon dioxide adsorption based on porous materials. RSC Adv 11:12658–12681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chouikhi N, Cecilia JA, Vilarrasa-García E, Besghaier S, Chlendi M, Franco Duro FI, Rodriguez Castellon E, Bagane M (2019) CO2 adsorption of materials synthesized from clay minerals: a review. Minerals. https://doi.org/10.3390/min9090514

    Article  Google Scholar 

  24. Lai JY, Ngu LH, Hashim SS (2021) A review of CO2 adsorbents performance for different carbon capture technology processes conditions. Greenh Gases Sci Technol 11:1076–1117

    Article  CAS  Google Scholar 

  25. Tombácz E, Szekeres M (2006) Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci 34:105–124

    Article  Google Scholar 

  26. Gan X, Teng Y, Xu J, Zhang N, Ren W, Zhao L, Christie P, Luo Y (2022) Influence of kaolinite and montmorillonite on benzo[a]pyrene biodegradation by Paracoccus aminovorans HPD-2 and the underlying interface interaction mechanisms. Pedosphere 32:246–255

    Article  CAS  Google Scholar 

  27. Zhu H, Xiao X, Guo Z, Han X, Liang Y, Zhang Y, Zhou C (2018) Adsorption of vanadium (V) on natural kaolinite and montmorillonite: characteristics and mechanism. Appl Clay Sci 161:310–316

    Article  CAS  Google Scholar 

  28. Ren J, Zeng S, Chen D, Yang M, Linga P, Yin Z (2023) Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration1. Appl Energy 340:120997

    Article  CAS  Google Scholar 

  29. Ren J, Liu X, Niu M, Yin Z (2022) Effect of sodium montmorillonite clay on the kinetics of CH4 hydrate—implication for energy recovery. Chem Eng J 437:135368

    Article  CAS  Google Scholar 

  30. Chen Y, Lu D (2014) Amine modification on kaolinites to enhance CO2 adsorption. J Colloid Interface Sci 436:47–51

    Article  PubMed  CAS  Google Scholar 

  31. Vilarrasa-García E, Cecilia JA, Rodríguez Aguado E, Jiménez-Jiménez J, Cavalcante CL, Azevedo DCS, Rodríguez-Castellón E (2017) Amino-modified pillared adsorbent from water-treatment solid wastes applied to CO2/N2 separation. Adsorption 23:405–421

    Article  Google Scholar 

  32. Volzone C (2007) Retention of pollutant gases: comparison between clay minerals and their modified products. Appl Clay Sci 36:191–196

    Article  CAS  Google Scholar 

  33. España VAA, Sarkar B, Biswas B, Rusmin R, Naidu R (2019) Environmental applications of thermally modified and acid activated clay minerals: current status of the art. Environ Technol Innov 13:383–397

    Article  Google Scholar 

  34. Wal K, Rutkowski P, Stawiński W (2021) Application of clay minerals and their derivatives in adsorption from gaseous phase. Appl Clay Sci 215:106323

    Article  CAS  Google Scholar 

  35. Venaruzzo JL, Volzone C, Rueda ML, Ortiga J (2002) Modified bentonitic clay minerals as adsorbents of CO, CO2 and SO2 gases. Microporous Mesoporous Mater 56:73–80

    Article  CAS  Google Scholar 

  36. Steudel A, Batenburg LF, Fischer HR, Weidler PG, Emmerich K (2009) Alteration of non-swelling clay minerals and magadiite by acid activation. Appl Clay Sci 44:95–104

    Article  CAS  Google Scholar 

  37. Frini-Srasra N, Srasra E (2010) Acid treatment of south Tunisian palygorskite: removal of Cd(II) from aqueous and phosphoric acid solutions. Desalination 250:26–34

    Article  CAS  Google Scholar 

  38. Wang W, Xiao J, Wei X, Ding J, Wang X, Song C (2014) Development of a new clay supported polyethylenimine composite for CO2 capture. Appl Energy 113:334–341

    Article  CAS  Google Scholar 

  39. Franco F, Pozo M, Cecilia JA, Benítez-Guerrero M, Pozo E, Martín Rubí JA (2014) Microwave assisted acid treatment of sepiolite: the role of composition and “crystallinity.” Appl Clay Sci 102:15–27

    Article  CAS  Google Scholar 

  40. Jedli H, Brahmi J, Hedfi H, Mbarek M, Bouzgarrou S, Slimi K (2018) Adsorption kinetics and thermodynamics properties of supercritical CO2 on activated clay. J Pet Sci Eng 166:476–481

    Article  CAS  Google Scholar 

  41. Horri N, Sanz-Pérez ES, Arencibia A, Sanz R, Frini-Srasra N, Srasra E (2020) Effect of acid activation on the CO2 adsorption capacity of montmorillonite. Adsorption 26:793–811

    Article  CAS  Google Scholar 

  42. Ugochukwu UC, Jones MD, Head IM, Manning DAC, Fialips CI (2014) Effect of acid activated clay minerals on biodegradation of crude oil hydrocarbons. Int Biodeterior Biodegradation 88:185–191

    Article  CAS  Google Scholar 

  43. Chen Y, Lu D (2015) CO2 capture by kaolinite and its adsorption mechanism. Appl Clay Sci 104:221–228

    Article  CAS  Google Scholar 

  44. Komadel P (2016) Acid activated clays: materials in continuous demand. Appl Clay Sci 131:84–99

    Article  CAS  Google Scholar 

  45. Jozefaciuk G, Bowanko G (2002) Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals. Clays Clay Miner 50:771–783

    Article  CAS  Google Scholar 

  46. Kooli F, Liu Y, Al-Faze R, Al Suhaimi A (2015) Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution. Appl Clay Sci 116–117:23–30

    Article  Google Scholar 

  47. Srasra E, Trabelsi-Ayedi M (2000) Textural properties of acid activated glauconite. Appl Clay Sci 17:71–84

    Article  CAS  Google Scholar 

  48. Akpomie KG, Dawodu FA (2016) Acid-modified montmorillonite for sorption of heavy metals from automobile effluent. Beni-Suef Univ J Basic Appl Sci 5:1–12

    Google Scholar 

  49. Panda AK, Mishra BG, Mishra DK, Singh RK (2010) Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids Surf Physicochem Eng Aspects 363:98–104

    Article  CAS  Google Scholar 

  50. Franco F, Pozo M, Cecilia JA, Benítez-Guerrero M, Lorente M (2016) Effectiveness of microwave assisted acid treatment on dioctahedral and trioctahedral smectites. The influence of octahedral composition. Appl Clay Sci 120:70–80

    Article  CAS  Google Scholar 

  51. Tyagi B, Chudasama CD, Jasra RV (2006) Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta A 64:273–278

    Article  Google Scholar 

  52. Noyan H, Önal M, Sarıkaya Y (2007) The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity, and bleaching power of a bentonite. Food Chem 105:156–163

    Article  CAS  Google Scholar 

  53. Foletto EL, Paz DS, Gündel A (2013) Acid-activation assisted by microwave of a Brazilian bentonite and its activity in the bleaching of soybean oil. Appl Clay Sci 83–84:63–67

    Article  Google Scholar 

  54. Spence A, Kelleher BP (2012) FT-IR spectroscopic analysis of kaolinite–microbial interactions. Vib Spectrosc 61:151–155

    Article  CAS  Google Scholar 

  55. Melnitchenko A, Thompson JG, Volzone C, Ortiga J (2000) Selective gas adsorption by metal exchanged amorphous kaolinite derivatives. Appl Clay Sci 17:35–53

    Article  CAS  Google Scholar 

  56. Volzone C, Ortiga J (2000) O2, CH4 and CO2 gas retentions by acid smectites before and after thermal treatment. J Mater Sci 35:5291–5294

    Article  CAS  Google Scholar 

  57. Cole DR, Chialvo AA, Rother G, Vlcek L, Cummings PT (2010) Supercritical fluid behavior at nanoscale interfaces: implications for CO2 sequestration in geologic formations. Philos Mag A 90:2339–2363

    Article  CAS  Google Scholar 

  58. Qi J, Yu J, Shah KJ, Shah DD, You Z (2023) Applicability of clay/organic clay to environmental pollutants: green way—an overview. Appl Sci 13:9395

    Article  CAS  Google Scholar 

  59. Fan WK, Tahir M (2022) Structured clay minerals-based nanomaterials for sustainable photo/thermal carbon dioxide conversion to cleaner fuels: a critical review. Sci Total Environ 845:157206

    Article  PubMed  CAS  Google Scholar 

  60. Huang WJ, Liu JH, She QM, Zhong JQ, Christidis GE, Zhou CH (2023) Recent advances in engineering montmorillonite into catalysts and related catalysis. Catal Rev 65:929–985

    Article  CAS  Google Scholar 

  61. Krūmiņš J, Kļaviņš M, Ozola-Davidāne R, Ansone-Bērtiņa L (2022) The prospects of clay minerals from the Baltic states for industrial-scale carbon capture: a review. Minerals 12:349

    Article  Google Scholar 

  62. Das S, Prateek SP, Kumar M, Gupta RK, Sharma H (2023) A review on clay exfoliation methods and modifications for CO2 capture application. Mater Today Sustain 23:100427

    Article  Google Scholar 

  63. Cecilia JA, Vilarrasa-García E, Cavalcante CL, Azevedo DCS, Franco F, Rodríguez-Castellón E (2018) Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 capture. J Environ Chem Eng 6:4573–4587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Teesside University for funding the PhD work of the first author. The authors would like to specifically thank the team of senior technicians at Teesside University, in particular Jeff Lawrence and Richard Medd, for their help in this project.

Funding

Teesside University funding the PhD work of the first author.

Author information

Authors and Affiliations

Authors

Contributions

MA: Conceptualization, Methodology, Laboratory Experiments, Investigation, Writing an original draft. SRG: conceptualization, Methodology, Supervision, Review, and Editing. TP: Review and Editing. DH: Review and Editing. DS: Review and Editing.

Corresponding author

Correspondence to Mardin Abdalqadir.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalqadir, M., Rezaei Gomari, S., Pak, T. et al. A comparative study of acid-activated non-expandable kaolinite and expandable montmorillonite for their CO2 sequestration capacity. Reac Kinet Mech Cat 137, 375–398 (2024). https://doi.org/10.1007/s11144-023-02521-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02521-w

Keywords

Navigation