Skip to main content
Log in

Degradation of agricultural pollutants by biopolymer-enhanced photocatalysis: application of Taguchi method for optimization

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This paper evaluates the photocatalytic degradation of malathion using titanium dioxide (TiO2) nanoparticles supported on sodium alginate (SA), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) polymer beads and ultraviolet light as irradiation source with a wavelength of 254 nm. Six different types of beads were prepared: SA, PVA, PVP, SA/TiO2, PVA/TiO2, and PVP/TiO2 to assess the effect of the adsorbent material on the photodegradation process by optimizing an experimental design using the Taguchi method. Four factors were considered: TiO2 concentration, bead mass, polymer type, and initial malathion concentration. The response variables were the percentage of removal of the contaminant and the removal rate calculated from the first-order kinetic models. A malathion degradation of 99% was achieved after 180 min of operation when using 100 g and 200 g of SA/TiO2, PVA/TiO2, and PVP/TiO2 beads. The best operating conditions were 1 g L−1 of TiO2, 100 g of bead mass, SA polymer, and 5 mg L−1 of malathion initial concentration. This study found that the adsorption process affected negatively the photodegradation process, reducing the removal efficiency and rate. Finally, the feasibility of the use of a biopolymer-enhanced photocatalytic treatment to degrade agro-industrial contaminants was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable

References

  1. Raju IM, Rao SKV, Divya G (2019) Poly 3-thenoic acid sensitized, copper doped anatase/brookite TiO2 nanohybrids for enhanced photocatalytic degradation of an organophosphorus pesticide. J Environ Chem Eng 7(4):103211

    Article  Google Scholar 

  2. Li W, Zhao Y, Yan X, Duan J, Saint CP, Beecham S (2019) Transformation pathway and toxicity assessment of malathion in aqueous solution during UV photolysis and photocatalysis. Chemosphere 234:204–214

    Article  CAS  PubMed  Google Scholar 

  3. Rangel-Peraza JG, Prado MAR, Amabilis-Sosa LE, Bustos-Terrones YA, Ramírez-Pereda B (2020) Malathion removal through peroxi-electrocoagulation and photocatalytic treatments optimization by statistical analysis. Int J Electrochem Sci 15:8253–8264

    Article  Google Scholar 

  4. Vassalini I, Gjipalaj J, Crespi S, Gianoncelli A, Mella M, Ferroni M, Alessandri I (2020) Alginate-derived active blend enhances adsorption and photocatalytic removal of organic pollutants in water. Adv Sustain Syst 4(7):1900112

    Article  CAS  Google Scholar 

  5. Hosseini M, Kamani H, Esrafili A, Badi MY, Gholami M (2019) Removal of malathion by sodium alginate/biosilicate/magnetite nanocomposite as a novel adsorbent: kinetics, isotherms, and thermodynamic. Study Health Scope 8(4):11

    Google Scholar 

  6. Juang RS, Chen CH (2014) Comparative study on photocatalytic degradation of methomyl and parathion over UV-irradiated TiO2 particles in aqueous solutions. J Taiwan Inst Chem Eng 45(3):989–995

    Article  CAS  Google Scholar 

  7. Hermosillo-Nevárez JJ, Bustos-Terrones V, Bustos-Terrones YA, Uriarte-Aceves PM, Rangel-Peraza JG (2020) Feasibility study on the use of recycled polymers for Malathion adsorption: isotherms and kinetic modeling. Materials 13(8):1824

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ullah S, Li Z, Hasan Z, Khan SU, Fahad S (2018) Malathion induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeo rohita, Hamilton) at acute concentration. Ecotoxicol Environ Saf 161:270–280

    Article  CAS  PubMed  Google Scholar 

  9. Flehi-Slim I, Chargui I, Boughattas S, El Mabrouk A, Belaïd-Nouira Y, Neffati F, Najjar MF, Haouas Z, Ben CH (2015) Malathion-induced hepatotoxicity in male Wistar rats: biochemical and histopathological studies. Environ Sci Pollut Res Int 22(22):17828–17838

    Article  CAS  PubMed  Google Scholar 

  10. Surendra B, Raju BM, Srikanth KN, Choudhary GL, Francis P, Vengalapati M (2020) Synthesis and characterization of Ni doped TiO2 nanoparticles and its application for the degradation of Malathion. Mater Today 26:1091–1095

    CAS  Google Scholar 

  11. Pérez-Lucas G, El AatikAliste AM, Hernández V, Fenoll J, Navarro S (2022) Reclamation of aqueous waste solutions polluted with pharmaceutical and pesticide residues by biological-photocatalytic (solar) coupling in situ for agricultural reuse. Chem Eng J 448:137616

    Article  Google Scholar 

  12. Tu H, Li D, Yi Y, Liu R, Wu Y, Dong X, Deng H (2019) Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution. Compos Commun 15:58–63

    Article  Google Scholar 

  13. Maldonado-Larios L, Mayen-Mondragón R, Martínez-Orozco RD, Páramo-García U, Gallardo-Rivas NV, García-Alamilla R (2020) Electrochemically assisted fabrication of titanium-dioxide/polyaniline nanocomposite films for the electroremediation of Congo red in aqueous effluents. Synth Met 268:116464

    Article  CAS  Google Scholar 

  14. González-González RB, Parra-Saldívar R, Alsanie WF, Iqbal HM (2022) Nanohybrid catalysts with porous structures for environmental remediation through photocatalytic degradation of emerging pollutants. Environ Res 214:113955

    Article  PubMed  Google Scholar 

  15. Zhao L, Deng J, Sun P, Liu J, Ji Y, Nakada N, Yang Y (2018) Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis. Sci Total Environ 627:1253–1263

    Article  CAS  PubMed  Google Scholar 

  16. Reveendran ST (2018) Application of experimental design for dyes removal in aqueous environment by using sodium alginate-TiO2 thin film. Chem Data Collect 15:32–40

    Article  Google Scholar 

  17. Ortíz MDJR, Valencia RH, Parra GA, Morales PA (2021) Síntesis verde de materiales nanoestructurados de ZnO en la degradación de contaminantes orgánicos por medio de la fotocatálisis heterogénea. Rev Cienc Tecnol 4(4):299–313

    Google Scholar 

  18. Mehmood CT, Zhong Z, Zhou H, Xiao Y (2020) Constructing porous beads with modified polysulfone-alginate and TiO2 as a robust and recyclable photocatalyst for wastewater treatment. J Water Process Eng 38:101601

    Article  Google Scholar 

  19. Farzadkia M, Esrafili A, Baghapour MA, Shahamat YD, Okhovat N (2013) Degradation of metronidazole in aqueous solution by nano-ZnO/UV photocatalytic process. Desalin Water Treat 52(25–27):4947–4952

    Google Scholar 

  20. Rodriguez-Mata AE, Tzompantzi FJ, Amabilis-Sosa LE, Diaz-Peña I, Bustos-Terrones Y, Rangel-Peraza JG (2018) Characterization of SO2-4/ZnO and photo degradation kinetics of 2, 4-Dichlorophenoxyacetic Acid (2, 4-D). Kinet Catal 59(6):720–726

    Article  CAS  Google Scholar 

  21. Han Z, Jin J, Wang Y, Zhang Z, Gu J, Ou M, Xu X (2019) Encapsulating TiO2 into polyvinyl alcohol coated polyacrylonitrile composite beads for the effective removal of methylene blue. J Braz Chem Soc 30:211–223

    CAS  Google Scholar 

  22. Elbarbary AM, Gad YH (2021) Radiation synthesis and characterization of poly (vinyl alcohol)/acrylamide/TiO2/SiO2 nanocomposite for removal of metal ion and dye from wastewater. J Inorg Organomet Polym Mater 31(10):4103–4125

    Article  CAS  Google Scholar 

  23. Hui KC, Suhaimi H, Sambudi NS (2021) Electrospun-based TiO2 nanofibers for organic pollutant photo degradation: a comprehensive review. Rev Chem Eng 38(6):641–668

    Article  Google Scholar 

  24. Moustafa H, Karmalawi AM, Youssef AM (2021) Development of hybrid TiO2 nanocomposites coated with dapsone and their effects on UV radiation, mechanical, thermal properties and antibacterial activity of PVA bionanocomposites. Environ Nanotechnol Monit Manag 16:100482

    CAS  Google Scholar 

  25. Kadam AN, Dhabbe RS, Kokate MR, Gaikwad YB, Garadkar KM (2014) Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochim Acta A 133:669–676

    Article  CAS  Google Scholar 

  26. Akter S, Islam MS, Kabir MH, Shaikh MA, Gafur MA (2022) UV/TiO2 photo degradation of metronidazole, ciprofloxacin and sulfamethoxazole in aqueous solution: an optimization and kinetic study. Arab J Chem 15(7):103900

    Article  CAS  Google Scholar 

  27. Karkeh-Abadi F, Saber-Samandari S, Saber-Samandari S (2016) The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co (II) ions from aqueous solutions. J Hazard Mater 312:224–233

    Article  CAS  PubMed  Google Scholar 

  28. Nouri L, Hemidouche S, Boudjemaa A, Kaouah F, Sadaoui Z, Bachari K (2020) Elaboration and characterization of photobiocomposite beads, based on titanium (IV) oxide and sodium alginate biopolymer, for basic blue 41 adsorption/photocatalytic degradation. Int J Biol Macromol 151:66–84

    Article  CAS  PubMed  Google Scholar 

  29. Lee SJ, Lim HW, Park SH (2021) Adsorptive seawater desalination using MOF-incorporated Cu-alginate/PVA beads: ion removal efficiency and durability. Chemosphere 268:128797

    Article  CAS  PubMed  Google Scholar 

  30. Dalponte I, de Sousa BC, Mathias AL, Jorge RM (2019) Formulation and optimization of a novel TiO2/calcium alginate floating photocatalyst. Int J Biol Macromol 137:992–1001

    Article  CAS  PubMed  Google Scholar 

  31. Gopinath KP, Madhav NV, Krishnan A, Malolan R, Rangarajan G (2020) Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: a review. J Environ Manag 270:110906

    Article  CAS  Google Scholar 

  32. Sakarkar S, Muthukumaran S, Jegatheesan V (2020) Evaluation of polyvinyl alcohol (PVA) loading in the PVA/titanium dioxide (TiO2) thin film coating on polyvinylidene fluoride (PVDF) membrane for the removal of textile dyes. Chemosphere 257:127144

    Article  CAS  PubMed  Google Scholar 

  33. Ainali NM, Kalaronis D, Evgenidou E, Bikiaris DN, Lambropoulou DA (2021) Insights into biodegradable polymer-supported titanium dioxide photocatalysts for environmental remediation. Macromolecules 1(3):201–233

    CAS  Google Scholar 

  34. Sherugar P, Naik NS, Padaki M, Nayak V, Gangadharan A, Nadig AR, Déon S (2021) Fabrication of zinc doped aluminum oxide/polysulfone mixed matrix membranes for enhanced antifouling property and heavy metal removal. Chemosphere 275:130024

    Article  CAS  PubMed  Google Scholar 

  35. Rafaie HA, Shohaimi NA, Ramli NI, Ishak ZI, Rosmi MS, Mohamed MA, Hir ZA (2022) Application of hybrid polymeric materials as photocatalyst in textile wastewater. In: Polymer technology in dye-containing wastewater, pp 101–143

  36. Balakrishnan A, Appunni S, Chinthala M (2022) Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: a review. Environ Chem Lett 20:3071–3098

    Article  CAS  Google Scholar 

  37. Zanella R (2012) Metodologías para la síntesis de nanopartículas: controlando forma y tamaño Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología 5(1):69–81

    Google Scholar 

  38. Martínez Rojas V, Matejova L, López Milla A, Cruz G, Solís Veliz J, Gómez León M (2015) Obtención de partículas de TiO2 por sol-gel, asistido con ultrasonido para aplicaciones fotocatalíticas. Rev Soc Quím Perú 81:201–211

    Google Scholar 

  39. Al Qarni F, Alomair N, Mohamed H (2019) Environment-friendly nanoporous titanium dioxide with enhanced photocatalytic activity. Catalysts 9:799

    Article  CAS  Google Scholar 

  40. Bustos-Terrones YA, Estrada-Vázquez R, Ramírez-Pereda B, Bustos-Terrones V, Rangel-Peraza JG (2020) Kinetics of a fixed bed reactor with immobilized microorganisms for the removal of organic matter and phosphorous. Water Environ Res 92(11):1956–1965

    Article  CAS  PubMed  Google Scholar 

  41. Basu H, Pimple MV, Saha S, Patel A, Dansena C, Singhal RK (2020) TiO2 microsphere impregnated alginate: a novel hybrid sorbent for uranium removal from aquatic bodies. New J Chem 44(10):3950–3960

    Article  CAS  Google Scholar 

  42. Rancic SM, Nikolic-Mandic SD, Mandic LM (2005) Kinetic spectrophotometric method for gold(III) determination. Anal Chim Acta 547(1):144–149

    Article  CAS  Google Scholar 

  43. Fazal T, Razzaq A, Javed F, Hafeez A, Rashid N, Amjad US, Rehman F (2020) Integrating adsorption and photocatalysis: a cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite. J Hazard Mater 390:121623

    Article  CAS  PubMed  Google Scholar 

  44. Chakhtouna H, Zari N, Bouhfid R, Qaiss A, Benzeid H (2021) Novel photocatalyst based on date palm fibers for efficient dyes removal. J Water Process Eng 43:102167

    Article  Google Scholar 

  45. Sarkar S, Chakraborty S, Bhattacharjee C (2015) Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR). Ecotoxil Environ Saf 121:263–270

    Article  CAS  Google Scholar 

  46. Chen JH, Liu QL, Hu SR, Ni JC, He YS (2011) Adsorption mechanism of Cu (II) ions from aqueous solution by glutaraldehyde crosslinked humic acid-immobilized sodium alginate porous membrane adsorbent. Chem Eng J 173(2):511–519

    Article  CAS  Google Scholar 

  47. Bolboacă SD, Jäntschi L (2007) Design of experiments: useful orthogonal arrays for number of experiments from 4 to 16. Entropy 9(4):198–232

    Article  Google Scholar 

  48. Suresh R, Rajendran S, Hoang TKA, Vo D-VN, Siddiqui MN, Cornejo-Ponce L (2021) Recent progress in green and biopolymer based photocatalysts for the abatement of aquatic pollutants. Environ Res 199:111324

    Article  CAS  PubMed  Google Scholar 

  49. Arikal D, Kallingal A (2021) Photocatalytic degradation of azo and anthraquinone dye using TiO2/MgO nanocomposite immobilized chitosan hydrogels. Environ Technol 42(15):2278–2291

    Article  CAS  PubMed  Google Scholar 

  50. Kumar R, George L, Jun Z, Mukherji S (2022) Photocatalytic activity of graphene oxide-TiO2 nanocomposite on dichlorvos and Malathion and assessment of toxicity changes due to photo degradation. Chemosphere 308:136402

    Article  CAS  PubMed  Google Scholar 

  51. Kralj MB, Cernigoj U, Franko M, Trebse P (2007) Comparison of photocatalysis and photolysis of Malathion, isoMalathion, malaoxon, and commercial Malathion—products and toxicity studies. Water Res 41:4504–4514

    Article  Google Scholar 

  52. Yu H, Wang X, Sun H, Huo M (2010) Photocatalytic degradation of malathion in aqueous solution using an Au–Pd–TiO2 nanotube film Au-Pd-TiO2. J Hazard Mater 184(1–3):753–758

    Article  CAS  PubMed  Google Scholar 

  53. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, New York

    Book  Google Scholar 

  54. Fernández JA, Cardozo MG, Carrascal AK, Salcedo JC, Pedroza AM, Daza CE (2015) Tratamiento de agua residual de microbiología usando películas delgadas de TiO2. Ingeniería Y Competitividad 17(1):35–48

    Article  Google Scholar 

  55. Alrousan DM, Dunlop PS, McMurray TA, Byrne JA (2009) Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. Water Res 43(1):47–54

    Article  CAS  PubMed  Google Scholar 

  56. Athanasekou C, Romanos GE, Papageorgiou SK, Manolis GK, Katsaros F, Falaras P (2017) Degradación fotocatalítica de contaminantes emergentes de cromo hexavalente a través de nanoestructuras de dióxido de titanio avanzadas. Revista de ingeniería química 318:171–180

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank TecNM/Instituto Tecnológico de Culiacán for providing the infrastructure to carry out this work and CONAHCYT for the scholarship provided to the first author.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaneth A. Bustos-Terrones.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4613 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada-Vázquez, R., Vaca-Mier, M., Bustos-Terrones, V. et al. Degradation of agricultural pollutants by biopolymer-enhanced photocatalysis: application of Taguchi method for optimization. Reac Kinet Mech Cat 137, 523–545 (2024). https://doi.org/10.1007/s11144-023-02515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02515-8

Keywords

Navigation