Skip to main content
Log in

Enhancing the hydrogen storage performances of La15Fe2Ni72Mn7B2Al2 alloy by adding graphene via ball-milling

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, La15Fe2Ni72Mn7B2Al2 hydrogen storage was composited with grapheme and the effect of ball milling time on the microstructure and properties of the alloy were studied. XRD analysis shows that the as-milled composites alloy consists of LaNi5, La3Ni13B2 and (Fe, Ni) phases. No new phase is formed in the composites alloy with the milling time increases. The ball-milling treatment produced amorphous structure and refined the particle size of the alloy. Electrochemical studies revealed that the discharge capacity of composites alloy was significantly improved. The ball-milling process enhances the maximum discharge capacity and the dynamics performance, especially for the alloy with milling time of 30 min. Moreover, self-discharge behavior of the composites alloy were also increased by ball-milled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article.

References

  1. Tarasov BP, Bocharnikov MS, Yanenko YB et al (2020) J Phys Energy 2:024005–024016

    Article  CAS  Google Scholar 

  2. Dematteis EM, Dreistadt DM, Capurso G et al (2021) J Alloy Comp 874:159925–159932

    Article  CAS  Google Scholar 

  3. Ouyang L, Chen K, Jiang J et al (2020) J Alloys Compd 829:154597–154606

    Article  CAS  Google Scholar 

  4. Oberoi AS, Nijhawan P, Singh P (2019) Energies 12:82–97

    Article  CAS  Google Scholar 

  5. Lototskyy MV, Davids MW, IvanTolj, et al (2015) Int J Hydrogen Energy 40:11491–11498

    Article  CAS  Google Scholar 

  6. Yan HZ, Kong FQ, Xiong W et al (2010) Int J Hydrogen Energy 35:5687–5692

    Article  CAS  Google Scholar 

  7. Yan HZ, Xiong W, Kong FQ et al (2011) Chinese Patent, CN200810176873.2

  8. Li S, Yin W, Qiao Y (2022) J Phys Chem Solids 160:110347–110352

    Article  CAS  Google Scholar 

  9. Zhou L, Zhou Y, Sun Y (2004) Int J Hydrogen Energy 29:475–479

    Article  CAS  Google Scholar 

  10. Srinivas G, Zhu Y, Piner R et al (2010) Carbon N Y 48:630–635

    Article  CAS  Google Scholar 

  11. Tarasov BP, Arbuzov AA, Volodin AA et al (2022) J Alloy Compd 896:162881–162890

    Article  CAS  Google Scholar 

  12. Li S, Wen B, Li Xi et al (2016) J Alloy Compd 654:580–585

    Article  CAS  Google Scholar 

  13. Song P, Xie K, Yang J et al (2022) Micron 157:103245–103256

    Article  CAS  PubMed  Google Scholar 

  14. Zhu Yunfeng, Liu Zhibing, Yang Yang et al (2010) Int J Hydrogen Energy 35:6350–6355

    Article  CAS  Google Scholar 

  15. Kuriyama N, Sakai T, Miyamura H et al (1993) J Alloys Compd 202:183–197

    Article  CAS  Google Scholar 

  16. Zheng G, Popov BN, White RE (1995) J Electrochem Soc 142:2695–2698

    Article  CAS  Google Scholar 

  17. Deng HX, Zhuang YH, Liu JQ et al (2004) J Alloys Compds 376:211–216

    Article  CAS  Google Scholar 

  18. Zhang X, Sun D, Yin W et al (2006) J Power Sources 154:290–297

    Article  CAS  Google Scholar 

  19. Li S, Guo C, Yin W et al (2018) ChemistrySelect 3(16):4536–4541

    Article  CAS  Google Scholar 

  20. Shao H, He L, Lin H et al (2018) Energy Technol 6:445–458

    Article  Google Scholar 

  21. Yuan Z, Li X, Li T et al (2022) Journal of Energy Storage 46:103702–103713

    Article  Google Scholar 

  22. Song F, Yao J, Yong H et al (2022) Int J Hydrogen Energy 30:xxx

    Google Scholar 

  23. Khafidz NZK, Yaakob Z, Lim KL et al (2016) Int J Hydrogen Energy 41:13131–13151

    Article  Google Scholar 

  24. Yavuz Abdulcabbar, Artan Murat, Yilmaz Necip Fazil (2022) Necip Fazil Yilmaz. J Phys Chem Solids 169:110872–110881

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No.52072332) and Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance (22567616H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shucun Li.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ren, T., Guo, C. et al. Enhancing the hydrogen storage performances of La15Fe2Ni72Mn7B2Al2 alloy by adding graphene via ball-milling. Reac Kinet Mech Cat 136, 2997–3007 (2023). https://doi.org/10.1007/s11144-023-02509-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02509-6

Keywords

Navigation