Skip to main content
Log in

Photocatalytic performance of copper slag in the degradation of 2,4-dichlorophenoxyacetic acid herbicide

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work reports the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using copper slag (CS). CS was extensively characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), N2 adsorption–desorption, Fourier transform infrared spectroscopy (FTIR), pHPZC analysis and UV–Vis techniques. The latter was also used to evaluate CS as a photocatalyst. The CS consists of a complex matrix of Fe2O3–SiO2–Al2O3–SO3–K2O in the form of magnetite, fayalite and silicate glass phase. CS had a band gap of 2.5 eV, which is in the range of values reported for fayalite, an n-type semiconductor with a well-defined surface state. Photodegradation of 85% of 2,4-D was achieved after 240 min of UV radiation exposure (λ = 254 nm). The activation energy for 2,4-D degradation at a concentration of 38.4 ppm was reported using a pseudo-first-order kinetic model. Mass spectrometry was used to analyze the photodegradation results. This raises the prospect of a low-cost and potentially efficient photocatalyst for the oxidation of organic pollutants in industrial wastewater under UV radiation, particularly for the degradation and mineralization of 2,4-D herbicides from an aqueous solution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fuentes I, Ulloa C, Jimenez E, Garcia X (2020) The reduction of Fe-bearing copper slag for its use as a catalyst in carbon oxide hydrogenation to methane. A contribution to sustainable catalysis. J Hazard Mater 387:121693

    Article  CAS  PubMed  Google Scholar 

  2. Bennett JA, Wilson K, Lee AF (2019) Catalytic applications of waste derived materials. J Mater Chem A 4:3617–3637

    Article  Google Scholar 

  3. Solís-López M, Durán-Moreno A, Rigas F, Morales AA, Navarrete M, Ramírez-Zamora RM (2014) Satinder Ahuja (ed) Chapter 9 Assessment of copper slag as a sustainable fenton-type photocatalyst for water disinfection. Water Reclamation and Sustainability, Elsevier. https://doi.org/10.1016/B978-0-12-411645-0.00009-2

  4. Dhir R, Brito J, Mangabhai R, Qun C (2017) Sustainable Construction Materials: Copper Slag, 1st edn. Woodhead Publishing, an imprint of Elsevier, Duxford. https://doi.org/10.1016/C2015-0-00465-8

    Book  Google Scholar 

  5. Yu W, Sun Y, Lei M, Chen S, Qiu T, Tang Q (2019) Preparation of micro-electrolysis material from flotation waste of copper slag and its application for degradation of organic contaminants in water. J Hazard Mater 361:221–227

    Article  CAS  PubMed  Google Scholar 

  6. Kiyak B, Ozer A, Altundogan SH, Erdem M, Tumen F (1999) Cr reduction in aqueous solution by using copper smelter slag. Waste Manag 19:333–338

    Article  CAS  Google Scholar 

  7. Yañez-Aulestia A, Ramírez-Zamora RM (2023) Effect of ascorbic acid to improve the catalytic performance of metallurgical copper slag in the photo-Fenton type process for hydroxyl radical production applied to the degradation of antibiotics. J Environ Chem Eng 11:109897

    Article  Google Scholar 

  8. Montoya-Bautista CV, Avella E, Ramírez-Zamora RM, Schouwenaars R (2019) Metallurgical wastes employed as catalysts and photocatalysts for water treatment: a review. Sustainability 11:2470

    Article  CAS  Google Scholar 

  9. Freisthler MS, Robbins CR, Benbrook CM, Young HA, Haas DM, Winchester PD, Perry MJ (2022) Association between increasing agricultural use of 2,4-D and population biomarkers of exposure: findings from the National Health and Nutrition Examination Survey, 2001–2014. Environ Health 21:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosales-Robles E, Sánchez-de-la-Cruz R, Rodríguez-del-Bosque LA (2014) Tolerance of grain sorghum to two herbicides. Rev Fitotec Mex 37:89–94

    Google Scholar 

  11. Garabrant D, Philbert M (2002) Review of 2,4-Dichlorophenoxyacetic acid (2,4-D) epidemiology and toxicology. Crit Rev Toxicol 32:233–257

    Article  CAS  PubMed  Google Scholar 

  12. Peterson MA, McMaster SA, Riechers DE, Skelton J, Stahlman PW (2017) 2,4-D past, present, and future: a review. Weed Technol 30:303–345. https://doi.org/10.1614/WT-D-15-00131.1

    Article  Google Scholar 

  13. Girón-Navarro R, Linares-Hernández I, Teutli-Sequeira EA, Martínez-Miranda V, Santoyo-Tepole F (2021) Evaluation and comparison of advanced oxidation processes for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D): a review. Environ Sci Pollut Res Int 28:26325–26358

    Article  PubMed  Google Scholar 

  14. Li X, Shen T, Wang D, Yue X, Liu X, Yang Q, Zeng G (2012) Photodegradation of amoxicillin by catalyzed Fe3+/H2O2 process. J Environ Sci 24:269–275

    Article  CAS  Google Scholar 

  15. Sandeep S, Nagashree KL, Maiyalagan T, Keerthiga G (2018) Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid—a comparative study in hydrothermal TiO2 and commercial TiO2. Appl Surf Sci 449:371–379

    Article  CAS  Google Scholar 

  16. Dargahi A, Nematollahi D, Asgari G, Shokoohi R, Ansari A, Samarghandi MR (2018) Electrodegradation of 2,4-dichlorophenoxyacetic acid herbicide from aqueous solution using three-dimensional electrode reactor with G/β-PbO2 anode: Taguchi optimization and degradation mechanism determination. RSC Adv 8:39256–39268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adak A, Das I, Mondal B, Koner S, Datta P, Blaney L (2019) Degradation of 2,4-dichlorophenoxyacetic acid by UV 253.7 and UV-H2O2: reaction kinetics and effects of interfering substances. Emerg Contam 5:53–60

    Article  Google Scholar 

  18. Cai J, Zhou M, Yang W, Pan Y, Lu X, Serrano KG (2018) Degradation and mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) by thermally activated persulfate oxidation. Chemosphere 212:784–793

    Article  CAS  PubMed  Google Scholar 

  19. Estrella-González A, Asomoza M, Solís S, García-Sanchez MA, Cipagauta-díaz S (2020) Enhanced photocatalytic degradation of the herbicide 2,4-dichlorophenoxyacetic acid by Pt/TiO2–SiO2 nanocomposites. Reac Kinet Mech Cat 131:489–503

    Article  Google Scholar 

  20. Montoya-Bautista CV, Acevedo-Pena P, Zanella R, Ramirez-Zamora RM (2020) Characterization and evaluation of copper slag as a bifunctional photocatalyst for alcohols degradation and hydrogen production. Top Catal. 64:131–141

    Article  Google Scholar 

  21. Mahadeva M, Nagabhushana BM, Hari Krishna R, Nagaraju K, Raveendra RS, Prashanth PA (2017) Fast adsorptive removal of methylene dye from aqueous solution onto a wild carrot flower activated carbon: isotherms and kinetics studies. Desalin Water Treat 71:399–405

    Article  Google Scholar 

  22. Morales-Zarate JA, Paredes-Carrera SP, Castro-Sotelo LV (2018) Mixed oxides of Zn/Al, Zn/Al-La and Zn-Mg/Al: preparation, characterization, and photocatalytic activity in diclofenac degradation. Rev Mex Ing Quim 17:941–953

    Article  CAS  Google Scholar 

  23. Mendoza-Damian G, Tzompantzi F, Mantilla A, Pérez-Hernández R, Hernández-Gordillo A (2016) Improved photocatalytic activity of SnO2–ZnAl LDH prepared by one step Sn4+ incorporation. Appl Clay Sci 121:127–136

    Article  Google Scholar 

  24. Sihai Z, Nengwu Z, Weiqing S, Xiaorong W, Fei L, Weiwen M, Fulin M, Pingxiao W (2022) Relationship between mineralogical phase and bound heavy metals in copper smelting slags. Resour Conserv Recycl 178:106098

    Article  Google Scholar 

  25. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series. Kluwer Academic Publishers, London

    Book  Google Scholar 

  26. Qafoku O, Ilton E, Bowden ME, Kovarik L, Zhang X, Kukkadapu RK, Engelhard MH, Thompson CJ, Schaef HT, McGrail BP, Rosso KM, Loring JS (2018) Synthesis of nanometer-sized fayalite and magnesium-iron (II) mixture olivines. J Colloid Interface Sci 515:129–138

    Article  CAS  PubMed  Google Scholar 

  27. Letshwenyo MW, Sima TV (2020) Phosphorus removal from secondary wastewater effluent using copper smelter slag. Heliyon 6:e04134

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li X, Zhou M, Pan Y (2018) Enhanced degradation of 2,4-dichlorophenoxyacetic acid by pre-magnetization Fe–C activated persulfate: influential factors, mechanism and degradation pathway. J Hazard Mater 353:454–465

    Article  CAS  PubMed  Google Scholar 

  29. Belhamdi B, Merzougui Z, Trari M, Addoun A (2016) A kinetic, equilibrium and thermodynamic study of 1-phenylalanine adsorption using activated carbon based on agricultural waste (date stones). J Appl Res Technol 14:354–366

    Article  Google Scholar 

  30. Türk T, Alp İ, Sezer R, Arslan C (2020) Removal of arsenic from water using copper slag. J S Afr Inst Min Metall 120:313–318

    Article  Google Scholar 

  31. Zeng M (2013) Influence of TiO2 surface properties on water pollution treatment and photocatalytic activity. Bull Korean Chem Soc 34:953–956

    Article  CAS  Google Scholar 

  32. National Center for Biotechnology Information. "PubChem Compound Summary for CID 1486, 2,4-Dichlorophenoxyaceticacid"PubChem,https://pubchem.ncbi.nlm.nih.gov/compound/2_4-Dichlorophenoxyacetic-acid. Accessed 18 July 2023

  33. Zhi K, Li Z, Ma P, Tan Y, Zhou Y, Zhang W, Zhang J (2021) A Review of activation persulfate by iron-based catalysts for degrading wastewater. Appl Sci 11:11314

    Article  CAS  Google Scholar 

  34. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  35. Jawad AH, Rashid RA, Azlan M, Ishak M, Wilson LD (2016) Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat 57:25194–25206

    Article  CAS  Google Scholar 

  36. NIST Mass Spectrometry Data Center, https://webbook.nist.gov/cgi/inchi?ID=C94757&Mask=200#Mass-Spec. Accessed 18 July 2023

  37. Liu M, Huang D, Quan S, Zheng J, Zhang W, Liu L (2014) Degradation of 2,4-dichlorophenoxyacetic acid in an internal circulation three-phase fluidized photoreactor using N-TiO2=γ-Al2O3 granule as adsorbent and photocatalyst. J Environ Eng 140:04014026

    Article  Google Scholar 

  38. Golshan M, Kakavandi B, Ahmadi M, Azizi M (2018) Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2,4-D degradation: Process feasibility, mechanism and pathway. J Hazard Mater 359:325–337

    Article  CAS  PubMed  Google Scholar 

  39. Jaafarzadeh N, Ghanbari F, Ahmadi M (2017) Efficient degradation of 2,4- dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes. Chem Eng J 320:436–447

    Article  CAS  Google Scholar 

  40. Girón-Navarro R, Linares-Hernández I, Teutli-Sequeira EA, Martínez-Miranda V, Santoyo-Tepole F (2021) Evaluation and comparison of advanced oxidation processes for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D): a review. Environ Sci Pollut Res 28:26325–26358

    Article  Google Scholar 

  41. Anzalone A (2008) Herbicidas: Modos y mecanismos de acción en plantas. ISBN 978–980–230–100–5. https://www.researchgate.net/publication/259175751_Herbicidas_Modos_y_mecanismos_de_accion_en_plantas Accessed 10 July 2023

  42. Li MJ, Wang HP, Li SM, Chen XY, Jin MJ, Shao H, Wang J, Jin F (2022) High-throughput analysis of polyethoxylated tallow amine homologs in citrus using a modified QuEChERS-HILIC-MS method. Front Nutr 9:1061195

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the IPN for its financial support (SIP-20231201) and the Centro de Nano, Micro y Nanotecnología of the IPN for its technical support. We thank Dr. Elim Albiter for the technical support at the photoluminescence spectrometer at the Laboratorio de Catálisis de posgrado of the ESIQIE. Thanks to M. I. Diana García for her support in the analyses. Finally, we thank Dr. Lourdes Bazan-Díaz for the SEM technical support at the Laboratorio Universitario de Microscopía Electrónica (LUME) of the UNAM.

Author information

Authors and Affiliations

Authors

Contributions

LVC and BAV conceived and designed the experiments; LVC, BAV, MEM, and EO performed the experiments; LVC, BAV, EO, and MEM analyzed the data and wrote the manuscript; LVC and BAV contributed reagents/materials/synthesis tools; and LVC, BAV, MEM, and EO revised/discussed the paper.

Corresponding author

Correspondence to L. V. Castro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, L.V., Alcántar-Vázquez, B., Ortiz-Islas, E. et al. Photocatalytic performance of copper slag in the degradation of 2,4-dichlorophenoxyacetic acid herbicide. Reac Kinet Mech Cat 136, 3211–3226 (2023). https://doi.org/10.1007/s11144-023-02502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02502-z

Keywords

Navigation