Skip to main content
Log in

In situ preparation and photocatalytic performance of Ti3C2/TiO2 nanocomposite in the degradation of methyl orange and methylene blue

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Ti3C2/TiO2 nanocomposites with high photocatalytic performance are prepared by one-step hydrothermal method. The morphology, microstructure and phase composition of the composites are analyzed and characterized by field emission scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photocatalytic properties of pure TiO2, Ti3C2 and Ti3C2/TiO2 nanocomposites are evaluated using ultraviolet-visible-near-infrared (UV-VIS-NIR, UV-3600) spectrophotometer. The photocatalytic properties of pure TiO2, Ti3C2 and Ti3C2/TiO2 nanocomposites are investigated by using a 500 W xenon lamp to simulate the degradation of organic pollutants under sunlight. Under visible light irradiation, as for Ti3C2/TiO2, the electron and hole are separated more effectively than that of pure TiO2 and Ti3C2 and thus exhibit better photocatalytic performance than TiO2 and Ti3C2. In addition, Ti3C2/TiO2 nanocomposites are heat-treated at different temperatures. The results show that Ti3C2/TiO2-350 obtained by heat treatment at 350 °C exhibits preferable photocatalytic performance and more efficient electron-hole separation behavior than pure TiO2 and Ti3C2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tkaczyk A, Mitrowska K, Posyniak A (2020) Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci Total Environ 717:137222

    Article  CAS  PubMed  Google Scholar 

  2. Hubadillah SK, Jamalludin MR, Othman MHD, Iwamoto Y (2022) Recent progress on low-cost ceramic membrane for water and wastewater treatment. Ceram Int 48:24157–24191

    Article  CAS  Google Scholar 

  3. Rajkumar D, Kim JG (2006) Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. J Hazard Mater 136:203–212

    Article  CAS  PubMed  Google Scholar 

  4. Sakkayawong N, Thiravetyan P, Nakbanpote W (2005) Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J Colloid Interface Sci 286:36–42

    Article  CAS  PubMed  Google Scholar 

  5. El-Gohary F, Tawfik A (2009) Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination 249:1159–1164

    Article  CAS  Google Scholar 

  6. Brown MA, De Vito SC (1993) Predicting azo dye toxicity. Crit Rev Environ Sci Technol 23:249–324

    Article  CAS  Google Scholar 

  7. Chung KT (2016) Azo dyes and human health: a review. J Environ Sci Health C 34:233–261

    Article  CAS  Google Scholar 

  8. Solís M, Solís A, Pérez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47:1723–1748

    Article  Google Scholar 

  9. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  PubMed  Google Scholar 

  10. Khan MM, Lee J, Cho MH (2014) Au@ TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect. J Ind Eng Chem 20:1584–1590

    Article  CAS  Google Scholar 

  11. Ma J, Yu F, Zhou L, Jin L, Yang M, Luan J, Tang Y, Fan H, Yuan Z, Chen J (2012) Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl Mater Interfaces 4:5749–5760

    Article  CAS  PubMed  Google Scholar 

  12. Ramutshatsha-Makhwedzha D, Mavhungu A, Moropeng ML, Mbaya R (2022) Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon 8:e09930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma D, Yi H, Lai C, Liu X, Huo X, An Z, Li L, Fu Y, Li B, Zhang M (2021) Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 275:130104

    Article  CAS  PubMed  Google Scholar 

  14. Pizarro-Ortega CI, Dioses-Salinas DC, Severini MDF, López ADF, Rimondino GN, Benson NU, Dobaradaran S, De-la-Torre GE (2022) Degradation of plastics associated with the COVID-19 pandemic. Mar Pollut Bull 176:113474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan SS, Khoo KS, Chew KW, Ling TC, Show PL (2022) Recent advances biodegradation and biosorption of organic compounds from wastewater: microalgae-bacteria consortium—a review. Biores Technol 344:126159

    Article  CAS  Google Scholar 

  16. Xie ZH, He CS, Zhou HY, Li LL, Liu Y, Du Y, Liu W, Mu Y, Lai B (2022) Effects of molecular structure on organic contaminants’ degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS. Environ Sci Technol 56:8784–8795

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Berbille A, Feng Y, Li S, Zhu L, Tang W, Wang ZL (2022) Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat Commun 13:130

    Article  PubMed  PubMed Central  Google Scholar 

  18. Touliabah HES, El-Sheekh MM, Ismail MM, El-Kassas H (2022) A review of microalgae-and cyanobacteria-based biodegradation of organic pollutants. Molecules 27:1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kayaci F, Vempati S, Ozgit-Akgun C, Donmez I, Biyikli N, Uyar T (2014) Selective isolation of the electron or hole in photocatalysis: ZnO–TiO 2 and TiO 2–ZnO core–shell structured heterojunction nanofibers via electrospinning and atomic layer deposition. Nanoscale 6:5735–5745

    Article  CAS  PubMed  Google Scholar 

  20. Yang QL, Fang YW, Song YB, Jia SS, Lu YL, Yu DK, Fu ML (2015) Preparation of Cu2O/TiO2 heterostructure with high visible-light photocatalytic activity. Adv Mater Res 1073:47–51

    Google Scholar 

  21. Dharma HNC, Jaafar J, Widiastuti N, Matsuyama H, Rajabsadeh S, Othman MHD, Rahman MA, Jafri NNM, Suhaimin NS, Nasir AM (2022) A review of titanium dioxide (TiO2)-based photocatalyst for oilfield-produced water treatment. Membranes 12:345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang W, Rhim JW (2022) Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packag Shelf Life 31:100806

    Article  CAS  Google Scholar 

  23. Žerjav G, Žižek K, Zavašnik J, Pintar A (2022) Brookite vs. rutile vs. anatase: whats behind their various photocatalytic activities? J Environ Chem Eng 10:107722

    Article  Google Scholar 

  24. Nachit W, Ahsaine HA, Ramzi Z, Touhtouh S, Goncharova I, Benkhouja K (2022) Photocatalytic activity of anatase-brookite TiO2 nanoparticles synthesized by sol gel method at low temperature. Opt Mater 129:112256

    Article  CAS  Google Scholar 

  25. Ruan X, Cui X, Cui Y, Fan X, Li Z, Xie T, Ba K, Jia G, Zhang H, Zhang L (2022) Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%. Adv Energy Mater 12:2200298

    Article  CAS  Google Scholar 

  26. Gao G, O’Mullane AP, Du A (2017) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7:494–500

    Article  CAS  Google Scholar 

  27. Sarkar A, Karmakar K, Khan GG (2017) Designing Co-Pi modified one-dimensional n–p TiO2/ZnCo2O4 nanoheterostructure photoanode with reduced electron–hole pair recombination and excellent photoconversion efficiency (> 3%). J Phys Chem C 121:25705–25717

    Article  CAS  Google Scholar 

  28. Bibi I, Naz T, Majid F, Kamal S, Ata S, Almoneef MM, Iqbal S, Iqbal M (2021) Band gap tuning of BaFe12O19 with Mg and Mn doping to enhance solar light absorption for photocatalytic application. Int J Energy Res 45:11193–11205

    Article  CAS  Google Scholar 

  29. Navarro Yerga RM, Álvarez Galván MC, Del Valle F, Villoria de la Mano JA, Fierro JL (2009) Water splitting on semiconductor catalysts under visible-light irradiation. ChemSusChem: Chem Sustain Energy Mater 2:471–485

    Article  CAS  Google Scholar 

  30. Li J, Chu D (2018) Energy band engineering of metal oxide for enhanced visible light absorption. Multifunctional photocatalytic materials for energy. Elsevier, Amsterdam, pp 49–78

    Chapter  Google Scholar 

  31. Peng Z, Chen X, Fan Y, Srolovitz DJ, Lei D (2020) Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci Appl 9:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang K, Zhou Y, Xu W, Huang D, Wang Z, Hong M (2016) Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram Int 42:8419–8424

    Article  CAS  Google Scholar 

  33. Liu S, Wang M, Liu G, Wan N, Ge C, Hussain S, Meng H, Wang M, Qiao G (2021) Enhanced NO2 gas-sensing performance of 2D Ti3C2/TiO2 nanocomposites by in-situ formation of Schottky barrier. Appl Surf Sci 567:150747

    Article  CAS  Google Scholar 

  34. Joo JB, Lee I, Dahl M, Moon GD, Zaera F, Yin Y (2013) Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Adv Func Mater 23:4246–4254

    Article  CAS  Google Scholar 

  35. Fang H, Pan Y, Yan H, Qin X, Wang C, Xu L, Pan C (2020) Facile preparation of Yb3+/Tm3+ co-doped Ti3C2/Ag/Ag3VO4 composite with an efficient charge separation for boosting visible-light photocatalytic activity. Appl Surf Sci 527:146909

    Article  CAS  Google Scholar 

  36. Tang F, Liu C, Chen F, Qian J, Qiu Y, Meng X, Chen Z (2022) Preparation of CdS-g-C3N4/C composites via hollyhock stem biotemplate and its photocatalytic property. Ceram Int 48:28614–28621

    Article  CAS  Google Scholar 

  37. Zhong Q, Li Y, Zhang G (2021) Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives. Chem Eng J 409:128099

    Article  CAS  Google Scholar 

  38. Huang Z, Zhao X, Xia H, Lu F, Hu L, Chu PK (2021) Insights into enhancement of photocatalytic properties of g-C3N4 by local electric field induced by polarization of MgO (111). J Environ Chem Eng 9:105922

    Article  CAS  Google Scholar 

  39. Biswal L, Acharya L, Mishra BP, Das S, Swain G, Parida K (2023) Interfacial solid-state mediator-based Z-scheme heterojunction TiO2@ Ti3C2/MgIn2S4 microflower for efficient photocatalytic pharmaceutical micropollutant degradation and hydrogen generation: stability, kinetics, and mechanistic insights. ACS Appl Energy Mater 6:2081–2096

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Key Research & Development and promotion projects in Henan Province (grant numbers 212102210457, 22104030021, 212102210134, 232102230003).

Author information

Authors and Affiliations

Authors

Contributions

SC: Methodology, Data curation, Software, Writing the first draft; MS: Investigation, Methodology, Funding acquisition, Project administration; XL: Experimental, Data processing, Thesis revision; HW: Formal analysis; PC: Investigation, Formal analysis; XW: Formal analysis; ZL: Writing- review & edit.

Corresponding author

Correspondence to Min Sun.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, S., Sun, M., Li, X. et al. In situ preparation and photocatalytic performance of Ti3C2/TiO2 nanocomposite in the degradation of methyl orange and methylene blue. Reac Kinet Mech Cat 136, 3271–3282 (2023). https://doi.org/10.1007/s11144-023-02500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02500-1

Keywords

Navigation