Skip to main content
Log in

Insights into the stability of the iron oxide immobilized into mesoporous silica catalysts in iodine–sulfur cycle for hydrogen production

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, iron oxide nanoparticles were immobilized inside a mesoporous silica shell, forming core–shell structures through wet impregnation and sol–gel methods. The catalytic activity of these nanoparticles was investigated in a continuous packed bed laboratory flow reactor in the temperature range of 1000 to 1173 K at 8.1 h−1 WHSV (weight hour space velocity). Further, the long-term thermal stability was tested at 1173 K at 8.1 h−1 WHSV up to 100 h time-on-stream run. Among all the synthesized catalysts, iron oxide nanoparticles immobilized inside a mesoporous silica shell (FSCS) showed the highest activity and was remain active for more than 100 h with ~ 82% conversion at 1123 K. The calculated activation energy of this catalyst was found to be 127.39 kJ/mol. The performance results on the FSCS showed negligible agglomeration and metal loss (< 4%), thus enabling them to be a potential catalyst in this high-temperature endothermic reaction in the continuous industrial-scale hydrogen production plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jain IP (2009) Hydrogen the fuel for 21st century. Int J Hydrog Energy 34:7368–7378. https://doi.org/10.1016/j.ijhydene.2009.05.093

    Article  CAS  Google Scholar 

  2. Go KS, Son SR, Kim SD (2008) Reaction kinetics of reduction and oxidation of metal oxides for hydrogen production. Int J Hydrog Energy 33(21):5986–5995. https://doi.org/10.1016/j.ijhydene.2008.05.039

    Article  CAS  Google Scholar 

  3. Brown NR, Revankar ST (2012) A review of catalytic sulfur (VI) oxide decomposition experiments. Int J Hydrog Energy 37:2685–2698. https://doi.org/10.1016/j.ijhydene.2011.10.054

    Article  CAS  Google Scholar 

  4. Li Z, Liu R, Liu D et al (2021) Three-dimensional porous cobalt as an efficient catalyst for hydrogen production by NaBH4 hydrolysis. React Kinet Mech Catal 134:665–675. https://doi.org/10.1007/s11144-021-02099-1

    Article  CAS  Google Scholar 

  5. Martynenko EA, Vostrikov SV, Pimerzin AA (2021) Hydrogen production from decalin over silica-supported platinum catalysts: a kinetic and thermodynamic study. React Kinet Mech Catal 133:713–728. https://doi.org/10.1007/s11144-021-02037-1

    Article  CAS  Google Scholar 

  6. Boudjemaa A, Auroux A, Boumaza S et al (2009) Hydrogen production on iron-magnesium oxide in the high-temperature water-gas shift reaction. React Kinet Catal Lett 98:319–325. https://doi.org/10.1007/s11144-009-0084-3

    Article  CAS  Google Scholar 

  7. Inaba M, Murata K, Saito M et al (2002) Hydrogen production by conversion of methane over nickel-supported USY type zeolite catalysts. React Kinet Catal Lett 77:109–115

    Article  CAS  Google Scholar 

  8. Brown LC, Lentsch RD, Besenbruch GE, et al (2003) Alternative flowsheets for the sulfur-iodine thermochemical hydrogen cycle

  9. Pathak S, Upadhyayula S (2022) A review on the development of supported non-noble metal catalysts for the endothermic high temperature sulfuric acid decomposition step in the Iodine-sulfur cycle for hydrogen production. Int J Hydrog Energy 47:14186–14210. https://doi.org/10.1016/j.ijhydene.2022.02.165

    Article  CAS  Google Scholar 

  10. Pathak S, Upadhyayula S (2021) High temperature sulfuric acid decomposition in iodine-sulfur process –thermodynamics, concentrator and reactor, product separation, materials, and energy analysis. Int J Hydrog Energy 46:34148–34174. https://doi.org/10.1016/j.ijhydene.2021.07.216

    Article  CAS  Google Scholar 

  11. Pathak S, Goswami A, Upadhyayula S (2019) Kinetic modeling and simulation of catalyst pellet in the high temperature sulfuric acid decomposition section of Iodine-sulfur process. Int J Hydrog Energy 44:30850–30864. https://doi.org/10.1016/j.ijhydene.2019.10.017

    Article  CAS  Google Scholar 

  12. Pathak S, Dwivedi S, Upadhyayula S (2019) Framework development and modeling of the thermodynamics for aqueous sulfuric acid decomposition. J Mol Liq 291:111215. https://doi.org/10.1016/j.molliq.2019.111215

    Article  CAS  Google Scholar 

  13. Sun Q, Gao Q, Zhang P et al (2020) Modeling sulfuric acid decomposition in a bayonet heat exchanger in the iodine-sulfur cycle for hydrogen production. Appl Energy. https://doi.org/10.1016/j.apenergy.2020.115611

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nguyen TDB, Gho YK, Cho WC et al (2014) Kinetics and modeling of hydrogen iodide decomposition for a bench-scale sulfur-iodine cycle. Appl Energy 115:531–539. https://doi.org/10.1016/j.apenergy.2013.09.041

    Article  CAS  Google Scholar 

  15. Shin Y, Lim J, Lee T et al (2017) Designs and CFD analyses of H2SO4 and HI thermal decomposers for a semi-pilot scale SI hydrogen production test facility. Appl Energy 204:390–402. https://doi.org/10.1016/j.apenergy.2017.07.055

    Article  CAS  Google Scholar 

  16. Zhang Y, Liu J, Lin X et al (2013) Detailed kinetic modeling of homogeneous HI decomposition for hydrogen production—Part II: effect of I2 on HI decomposition. Int J Hydrog Energy 38:4308–4314. https://doi.org/10.1016/j.ijhydene.2013.01.165

    Article  CAS  Google Scholar 

  17. Zhang Y, Yang H, Zhou J et al (2014) Detailed kinetic modeling of homogeneous H2SO4 decomposition in the sulfur-iodine cycle for hydrogen production. Appl Energy 130:396–402. https://doi.org/10.1016/j.apenergy.2014.05.017

    Article  CAS  Google Scholar 

  18. Nadar A, Banerjee AM, Pai MR et al (2017) Nanostructured Fe2O3 dispersed on SiO2 as catalyst for high temperature sulfuric acid decomposition—structural and morphological modifications on catalytic use and relevance of Fe2O3–SiO2 interactions. Appl Catal B 217:154–168. https://doi.org/10.1016/j.apcatb.2017.05.045

    Article  CAS  Google Scholar 

  19. Zhang Y, Wang R, Lin X et al (2015) Catalytic performance of different carbon materials for hydrogen production in sulfur-iodine thermochemical cycle. Appl Catal B 166–167:413–422. https://doi.org/10.1016/j.apcatb.2014.11.026

    Article  CAS  Google Scholar 

  20. Nigam S, Majumder C (2012) Are deposited bimetallic clusters more effective for SO3 decomposition a systematic study using first principles theory. J Phys Chem C 116:25594–25601. https://doi.org/10.1021/jp308154p

    Article  CAS  Google Scholar 

  21. Gorensek MB, Edwards TB (2009) Energy efficiency limits for a recuperative bayonet sulfuric acid decomposition reactor for sulfur cycle thermochemical hydrogen production. Ind Eng Chem Res 48:7232–7245. https://doi.org/10.1021/ie900310r

    Article  CAS  Google Scholar 

  22. Nur ASM, Matsukawa T, Hinokuma S, Machida M (2017) Catalytic SO3 decomposition activity and stability of Pt supported on anatase TiO2 for solar thermochemical water-splitting cycles. ACS Omega 2:7057–7065. https://doi.org/10.1021/acsomega.7b00955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Banerjee AM, Shirole AR, Pai MR et al (2012) Catalytic activities of Fe2O3 and chromium doped Fe2O3 for sulfuric acid decomposition reaction in an integrated boiler, preheater, and catalytic decomposer. Appl Catal B 127:36–46. https://doi.org/10.1016/j.apcatb.2012.07.030

    Article  CAS  Google Scholar 

  24. Banerjee AM, Pai MR, Tewari R et al (2015) A comprehensive study on Pt/Al2O3 granular catalyst used for sulfuric acid decomposition step in sulfur-iodine thermochemical cycle: changes in catalyst structure, morphology and metal-support interaction. Appl Catal B 162:327–337. https://doi.org/10.1016/j.apcatb.2014.07.008

    Article  CAS  Google Scholar 

  25. Khan HA, Natarajan P, Jung KD (2018) Stabilization of Pt at the inner wall of hollow spherical SiO2 generated from Pt/hollow spherical SiC for sulfuric acid decomposition. Appl Catal B 231:151–160. https://doi.org/10.1016/j.apcatb.2018.03.013

    Article  CAS  Google Scholar 

  26. O’Keefe D, Allen C, Besenbruch G et al (1982) Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water-splitting cycle. Int J Hydrog Energy 7:381–392. https://doi.org/10.1016/0360-3199(82)90048-9

    Article  Google Scholar 

  27. Kondamudi K, Upadhyayula S (2012) Kinetic studies of sulfuric acid decomposition over Al–Fe2O3 catalyst in the sulfur-iodine cycle for hydrogen production. Int J Hydrog Energy 37:3586–3594. https://doi.org/10.1016/j.ijhydene.2011.05.026

    Article  CAS  Google Scholar 

  28. Banerjee AM, Pai MR, Meena SS et al (2011) Catalytic activities of cobalt, nickel and copper ferrospinels for sulfuric acid decomposition: the high temperature step in the sulfur based thermochemical water splitting cycles. Int J Hydrog Energy 36:4768–4780. https://doi.org/10.1016/j.ijhydene.2011.01.073

    Article  CAS  Google Scholar 

  29. Norman JH, Mysels KJ, Sharp R, Williamson D (1982) Studies of the sulfur-iodine thermochemical water-splitting cycle. Int J Hydrog Energy 7:545–556. https://doi.org/10.1016/0360-3199(82)90035-0

    Article  CAS  Google Scholar 

  30. Machida M, Kawada T, Yamashita H, Tajiri T (2013) Role of oxygen vacancies in catalytic SO3 decomposition over Cu2V2O7 in solar thermochemical water splitting cycles. J Phys Chem C 117:26710–26715. https://doi.org/10.1021/jp410431a

    Article  CAS  Google Scholar 

  31. Nur ASM, Matsukawa T, Ikematsu A, Machida M (2018) Stability of molten-phase Cs–V–O catalysts for SO3 decomposition in solar thermochemical water splitting. ACS Appl Energy Mater 1:2041–2047. https://doi.org/10.1021/acsaem.8b00145

    Article  CAS  Google Scholar 

  32. Nadar A, Banerjee AM, Pai MR et al (2018) Catalytic properties of dispersed iron oxides Fe2O3/MO2 (M = Zr, Ce, Ti and Si) for sulfuric acid decomposition reaction: Role of support. Int J Hydrog Energy 43:37–52. https://doi.org/10.1016/j.ijhydene.2017.10.163

    Article  CAS  Google Scholar 

  33. Nadar A, Banerjee AM, Pai MR et al (2021) Immobilization of crystalline Fe2O3 nanoparticles over SiO2 for creating an active and stable catalyst: a demand for high temperature sulfuric acid decomposition. Appl Catal B 283:119610. https://doi.org/10.1016/j.apcatb.2020.119610

    Article  CAS  Google Scholar 

  34. Petkovic LM, Ginosar DM, Rollins HW et al (2008) Pt/TiO2 (rutile) catalysts for sulfuric acid decomposition in sulfur-based thermochemical water-splitting cycles. Appl Catal A Gen 338:27–36. https://doi.org/10.1016/j.apcata.2007.12.016

    Article  CAS  Google Scholar 

  35. Wang L, Zhu Y, Yang H et al (2018) SO3 decomposition over CuO–CeO2 based catalysts in the sulfur–iodine cycle for hydrogen production. Int J Hydrog Energy 43:14876–14884. https://doi.org/10.1016/j.ijhydene.2018.06.056

    Article  CAS  Google Scholar 

  36. Pathak S, Saini S, Kondamudi K et al (2021) Insights into enhanced stability and activity of silica modified SiC supported iron oxide catalyst in sulfuric acid decomposition. Appl Catal B 284:119613. https://doi.org/10.1016/j.apcatb.2020.119613

    Article  CAS  Google Scholar 

  37. Karagiannakis G, Agrafiotis CC, Zygogianni A et al (2011) Hydrogen production via sulfur-based thermochemical cycles: part 1: synthesis and evaluation of metal oxide-based candidate catalyst powders for the sulfuric acid decomposition step. Int J Hydrog Energy 36:2831–2844. https://doi.org/10.1016/j.ijhydene.2010.11.083

    Article  CAS  Google Scholar 

  38. Giaconia A, Sau S, Felici C et al (2011) Hydrogen production via sulfur-based thermochemical cycles: part 2: performance evaluation of Fe2O3-based catalysts for the sulfuric acid decomposition step. Int J Hydrog Energy 36:6496–6509. https://doi.org/10.1016/j.ijhydene.2011.02.137

    Article  CAS  Google Scholar 

  39. Das S, Pérez-Ramírez J, Gong J et al (2020) Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev 49:2937–3004. https://doi.org/10.1039/c9cs00713j

    Article  CAS  PubMed  Google Scholar 

  40. Abdel-Mageed AM, Wiese K, Parlinska-Wojtan M et al (2020) Encapsulation of Ru nanoparticles: modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts. Appl Catal B. https://doi.org/10.1016/j.apcatb.2020.118846

    Article  Google Scholar 

  41. Chen S, Abdel-Mageed AM, Mochizuki C et al (2021) Controlling the O-vacancy formation and performance of Au/ZnO catalysts in CO2 reduction to methanol by the ZnO particle size. ACS Catal 11:9022–9033. https://doi.org/10.1021/acscatal.1c01415

    Article  CAS  Google Scholar 

  42. Khan HA, Iqbal MI, Jaleel A et al (2019) Pt encapsulated hollow mesoporous SiO2 sphere catalyst for sulfuric acid decomposition reaction in SI cycle. Int J Hydrog Energy 44:2312–2322. https://doi.org/10.1016/j.ijhydene.2018.07.161

    Article  CAS  Google Scholar 

  43. Liu Z, Che R, Elzatahry AA, Zhao D (2014) Direct imaging Au nanoparticle migration inside mesoporous silica channels. ACS Nano 8:10455–10460

    Article  CAS  PubMed  Google Scholar 

  44. Torres HM (1979) (2014) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 835:835–838

    Google Scholar 

  45. Jeong H, Lee G, Kim BS et al (2018) Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J Am Chem Soc 140:9558–9565

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Liu JX, Allard LF et al (2019) Surpassing the single-atom catalytic activity limit through paired Pt–O–Pt ensemble built from isolated Pt1 atoms. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-11856-9

    Article  CAS  Google Scholar 

  47. Lignos I, Mo Y, Carayannopoulos L et al (2021) A high-Temperature continuous stirred-Tank reactor cascade for the multistep synthesis of InP/ZnS quantum dots. React Chem Eng 6:459–464. https://doi.org/10.1039/d0re00454e

    Article  CAS  Google Scholar 

  48. Khan HA, Jung KD, Ahamad T et al (2021) Pt-core silica shell nanostructure: a robust catalyst for the highly corrosive sulfuric acid decomposition reaction in sulfur iodine cycle to produce hydrogen. New J Chem 45:1247–1252. https://doi.org/10.1039/d0nj04830e

    Article  CAS  Google Scholar 

  49. Kleitz F, Hei Choi S, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun. https://doi.org/10.1039/b306504a

    Article  Google Scholar 

  50. Hayakawa E, Himeno S (2020) Microporous and mesoporous materials synthesis of all-silica ZSM-58 zeolite membranes for separation of CO2/CH4 and CO2/N2 gas mixtures. Microporous Mesoporous Mater 291:109695. https://doi.org/10.1016/j.micromeso.2019.109695

    Article  CAS  Google Scholar 

  51. Niu D, Ma Z, Li Y, Shi J (2010) Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J Am Chem Soc 132:15144–15147. https://doi.org/10.1021/ja1070653

    Article  CAS  PubMed  Google Scholar 

  52. Zhang M, Fang K, Lin M et al (2013) Controlled fabrication of iron oxide/mesoporous silica core-shell nanostructures. J Phys Chem C 117:21529–21538. https://doi.org/10.1021/jp4049583

    Article  CAS  Google Scholar 

  53. El-Nahhal IM, Salem JK, Tabasi NS et al (2018) Synthesis and structural characterization of ZnO-and CuO-NPs supported mesoporous silica materials (hexagonal SBA-15 and lamellar-SiO2). Chem Phys Lett 691:211–218. https://doi.org/10.1016/j.cplett.2017.11.030

    Article  CAS  Google Scholar 

  54. Vradman L, Landau MV, Herskowitz M et al (2003) High loading of short WS2 slabs inside SBA-15: promotion with nickel and performance in hydrodesulfurization and hydrogenation. J Catal 213:163–175. https://doi.org/10.1016/S0021-9517(02)00012-X

    Article  CAS  Google Scholar 

  55. Li Y, Sun N, Li L et al (2013) Grafting of amines on ethanol-extracted SBA-15 for CO2 adsorption. Materials 6:981–999. https://doi.org/10.3390/ma6030981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kijima J, Shibuya Y, Katayama K et al (2018) Structural characterization of myoglobin molecules adsorbed within mesoporous silicas. J Phys Chem C 122:15567–15574. https://doi.org/10.1021/acs.jpcc.8b04356

    Article  CAS  Google Scholar 

  57. Zickler GA, Jähnert S, Funari SS et al (2007) Pore lattice deformation in ordered mesoporous silica studied by in situ small-angle X-ray diffraction. J Appl Crystallogr 40:522–526. https://doi.org/10.1107/S0021889806055968

    Article  CAS  Google Scholar 

  58. Ishii Y, Nishiwaki Y, Al-Zubaidi A, Kawasaki S (2013) Pore size determination in ordered mesoporous materials using powder X-ray diffraction. J Phys Chem C 117:18120–18130. https://doi.org/10.1021/jp4057362

    Article  CAS  Google Scholar 

  59. Beaucage G (1995) Approximations leading to a unified exponential/power-Law approach to small-angle scattering. J Appl Crystallogr 28:717–728. https://doi.org/10.1107/s0021889895005292

    Article  CAS  Google Scholar 

  60. Beaucage G, Schaefer DW (1994) Structural studies of complex systems using small-angle scattering: a unified Guinier/power-law approach. J Non Cryst Solids 172–174:797–805. https://doi.org/10.1016/0022-3093(94)90581-9

    Article  Google Scholar 

  61. Glatter O (1977) A new method for the evaluation of small-angle scattering data. J Appl Crystallogr 10:415–421. https://doi.org/10.1107/s0021889877013879

    Article  Google Scholar 

  62. Guinier A, Founet G, Walker CB (1955) Small-angle scattering of X-rays. Wiley, Hoboken

    Google Scholar 

  63. Fritz-Popovski G, Bergmann A, Glatter O (2011) Real space functions from experimental small angle scattering data. Phys Chem Chem Phys 13:5872–5880. https://doi.org/10.1039/c0cp01332c

    Article  CAS  PubMed  Google Scholar 

  64. Majzlan J, Navrotsky A, McCleskey RB, Alpers CN (2006) Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5. Eur J Mineral 18:175–186. https://doi.org/10.1127/0935-1221/2006/0018-0175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to ONGC, Energy Center Trust (OECT) India for financial support and the Department of Chemical Engineering, IIT Delhi, Hauz Khas New Delhi for facilitating the project (FT/11/123/2022). SP acknowledges DST and SERB, Government of India for Prime Minister's Doctoral Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreedevi Upadhyayula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1573 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, S., Upadhyayula, S. Insights into the stability of the iron oxide immobilized into mesoporous silica catalysts in iodine–sulfur cycle for hydrogen production. Reac Kinet Mech Cat 136, 2977–2996 (2023). https://doi.org/10.1007/s11144-023-02488-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02488-8

Keywords

Navigation