Skip to main content
Log in

C–H activation of ethane on palladium clusters: a computational study at the dual levels of density functional theory and coupled-cluster theory

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

We studied the C–H activation of ethane on the palladium (Pd) atomic clusters at the CCSD(T)/TZ//B3LYP/DZ level of theory, where TZ and DZ denote the LANL2 valence triple-ζ and double-ζ basis sets that include a relativistic pseudopotential for the Pd core electrons. In this study, we globally optimized first the Pdn clusters (n = 1–8) and then the transition state (TS) structures of Pdn + C2H6 → H−Pdn−C2H5. For each cluster size, we studied four spin states (S = 0, 1, 2, 3). The Pd atom is in the singlet electronic state ([Kr]4d10) at the CCSD(T) level. The CCSD(T) global minima of the Pd3, Pd7, and Pd8 clusters are also in the singlet electronic state, whereas the CCSD(T) global minima of Pd2, Pd4, Pd5, and Pd6 are in the triplet electronic state. The atomization energy of Pdn increases monotonically with the cluster size. Pd4 and Pd6 are particularly stable relative to their neighboring sizes. Among all sizes, Pd4 is the least active toward the C–H bonds in ethane, followed by sizes 5, 7, 3, and 1, whereas Pd2, Pd6, and Pd8 are the most active: the enthalpy of activation of the Pdn + C2H6 → H−Pdn−C2H5 reaction at room temperature are –29, –21, and 8 kJ/mol at these three sizes, respectively, indicating their strong ability to activate ethane. Among these three sizes, Pd2 is highly unstable and thus less ideal. Pd6 and Pd8 are both energetically stable and active toward the C–H bonds of ethane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information file. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Ethene (Ethylene) http://www.essentialchemicalindustry.org/chemicals/ethene.html

  2. Xu Z, Xiao F-S, Purnell SK et al (1994) Size-dependent catalytic activity of supported metal clusters. Nature 372:346–348. https://doi.org/10.1038/372346a0

    Article  CAS  Google Scholar 

  3. Argo AM, Odzak JF, Lai FS, Gates BC (2002) Observation of ligand effects during alkene hydrogenation catalysed by supported metal clusters. Nature 415:623–626

    Article  CAS  PubMed  Google Scholar 

  4. Venegas JM, McDermott WP, Hermans I (2018) Serendipity in catalysis research: boron-based materials for alkane oxidative dehydrogenation. Acc Chem Res 51:2556–2564. https://doi.org/10.1021/acs.accounts.8b00330

    Article  CAS  PubMed  Google Scholar 

  5. Shiju NR, Guliants VV (2009) Recent developments in catalysis using nanostructured materials. Appl Catal A Gen 356:1–17. https://doi.org/10.1016/j.apcata.2008.11.034

    Article  CAS  Google Scholar 

  6. Gaertner CA, van Veen AC, Lercher JA (2013) Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem 5:3196–3217. https://doi.org/10.1002/cctc.201200966

    Article  CAS  Google Scholar 

  7. Liu M, Wu J, Hou H (2019) Metal-organic framework (MOF)-based materials as heterogeneous catalysts for C–H bond activation. Chem Eur J 25:2935–2948. https://doi.org/10.1002/chem.201804149

    Article  CAS  PubMed  Google Scholar 

  8. Chen KD, Bell AT, Iglesia E (2000) Kinetics and mechanism of oxidative dehydrogenation of propane on vanadium, molybdenum, and tungsten oxides. J Phys Chem B 104:1292–1299

    Article  CAS  Google Scholar 

  9. Argyle MD, Chen KD, Bell AT, Iglesia E (2002) Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia. J Catal 208:139–149

    Article  CAS  Google Scholar 

  10. Heracleous E, Machli M, Lemonidou AA, Vasalos LA (2005) Oxidative dehydrogenation of ethane and propane over vanadia and molybdena supported catalysts. J Mol Catal A Chem 232:29–39

    Article  CAS  Google Scholar 

  11. Redfern PC, Zapol P, Sternberg M et al (2006) Quantum chemical study of mechanisms for oxidative dehydrogenation of propane on vanadium oxide. J Phys Chem B 110:8363–8371. https://doi.org/10.1021/jp056228w

    Article  CAS  PubMed  Google Scholar 

  12. Russell J, Zapol P, Král P, Curtiss LA (2012) Methane bond activation by Pt and Pd subnanometer clusters supported on graphene and carbon nanotubes. Chem Phys Lett 536:9–13. https://doi.org/10.1016/j.cplett.2012.03.080

    Article  CAS  Google Scholar 

  13. Kulkarni A, Lobo-Lapidus RJ, Gates BC (2010) Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties. Chem Commun 46:5997–6015. https://doi.org/10.1039/c002707n

    Article  CAS  Google Scholar 

  14. Uzun A, Dixon DA, Gates BC (2011) Prototype supported metal cluster catalysts: Ir4 and Ir6. ChemCatChem 3:95–107. https://doi.org/10.1002/cctc.201000271

    Article  CAS  Google Scholar 

  15. Ge Y, Jiang H, Kato R, Gummagatta P (2016) Size and site dependence of the catalytic activity of iridium clusters toward ethane dehydrogenation. J Phys Chem A 120:9500–9508. https://doi.org/10.1021/acs.jpca.6b09882

    Article  CAS  PubMed  Google Scholar 

  16. Cui Q, Musaev DG, Morokuma K (1998) Molecular orbital study of H2 and CH4 activation on small metal clusters. 2. Pd3 and Pt3. J Phys Chem A 102:6373–6384. https://doi.org/10.1021/jp982273a

    Article  CAS  Google Scholar 

  17. Ciebien JF, Cohen RE, Duran A (1998) Catalytic properties of palladium nanoclusters synthesized within diblock copolymer films: hydrogenation of ethylene and propylene. Supramol Sci 5:31–39

    Article  CAS  Google Scholar 

  18. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691

    Article  CAS  PubMed  Google Scholar 

  19. Keränen J, Auroux A, Ek S, Niinistö L (2002) Preparation, characterization and activity testing of vanadia catalysts deposited onto silica and alumina supports by atomic layer deposition. Appl Catal A Gen 228:213–225. https://doi.org/10.1016/S0926-860X(01)00975-9

    Article  Google Scholar 

  20. Adlhart C, Uggerud E (2005) C–H activation of alkanes on Rhn+ (n = 1 – 30) clusters: size effects on dehydrogenation. J Chem Phys 123:214709

    Article  PubMed  Google Scholar 

  21. Adlhart C, Uggerud E (2007) Mechanisms for the dehydrogenation of alkanes on platinum: Insights gained from the reactivity of gaseous cluster cations, Ptn+, n = 1 − 21. Chem Eur J 13:6883–6890. https://doi.org/10.1002/chem.200700501

    Article  CAS  PubMed  Google Scholar 

  22. Shore TC, Mith D, DePrekel D et al (2013) A B3LYP study on the C–H activation in propane by neutral and +1 charged low-energy platinum clusters with 2–6 atoms. React Kinet Mech Catal 109:315–333. https://doi.org/10.1007/s11144-013-0572-3

    Article  CAS  Google Scholar 

  23. Ge Y, Le A, Marquino GJ et al (2019) Tools for prescreening the most active sites on Ir and Rh clusters toward C–H bond cleavage of ethane: NBO charges and wiberg bond indexes. ACS Omega 4:18809–18819. https://doi.org/10.1021/acsomega.9b02813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan C, Liu H, Qin Y et al (2023) Correlation between the properties of surface lattice oxygen on NiO and its reactivity and selectivity towards the oxidative dehydrogenation of propane. ChemPhysChem 24:e202200539. https://doi.org/10.1002/cphc.202200539

    Article  CAS  PubMed  Google Scholar 

  25. Argo AM, Odzak JF, Gates BC (2003) Role of cluster size in catalysis: Spectroscopic investigation of γ-Al2O3-supported Ir4 and Ir6 during ethene hydrogenation. J Am Chem Soc 125:7107–7115. https://doi.org/10.1021/ja027741f

    Article  CAS  PubMed  Google Scholar 

  26. Nasr Azadani F, Fatemi S, Salehi Ardali N (2022) Kinetic modeling and optimization of the operating conditions of benzene alkylation with ethane on PtH-ZSM-5 catalyst. React Kinet Mech Catal 135:669–685. https://doi.org/10.1007/s11144-022-02188-9

    Article  CAS  Google Scholar 

  27. Xie Q, Miao C, Lei T et al (2021) Dehydrogenation of ethane assisted by CO2 over Y-doped ceria supported Au catalysts. React Kinet Mech Catal 132:417–429. https://doi.org/10.1007/s11144-020-01910-9

    Article  CAS  Google Scholar 

  28. Eslek Koyuncu DD (2021) Investigation of the effect of microwave heated reactor on ethane dehydrogenation over KIT-6 supported catalysts. React Kinet Mech Catal 132:379–399. https://doi.org/10.1007/s11144-021-01928-7

    Article  CAS  Google Scholar 

  29. Botková Š, Čapek L, Setnička M et al (2016) VOx species supported on Al2O3–SBA-15 prepared by the grafting of alumina onto SBA-15: structure and activity in the oxidative dehydrogenation of ethane. React Kinet Mech Catal 119:319–333. https://doi.org/10.1007/s11144-016-1036-3

    Article  CAS  Google Scholar 

  30. Barthos R, Novodárszki G, Valyon J (2017) Heterogeneous catalytic Wacker oxidation of ethylene over oxide-supported Pd/VOx catalysts: the support effect. React Kinet Mech Catal 121:17–29. https://doi.org/10.1007/s11144-016-1123-5

    Article  CAS  Google Scholar 

  31. Ferguson GA, Mehmood F, Rankin RB et al (2012) Exploring computational design of size-specific subnanometer clusters catalysts. Top Catal 55:353–365. https://doi.org/10.1007/s11244-012-9804-4

    Article  CAS  Google Scholar 

  32. Vajda S, Pellin MJ, Greeley JP et al (2009) Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater 8:213–216. https://doi.org/10.1038/nmat2384

    Article  CAS  PubMed  Google Scholar 

  33. Gaffney AM, Mason OM (2017) Ethylene production via oxidative dehydrogenation of ethane using M1 catalyst. Catal Today 285:159–165. https://doi.org/10.1016/j.cattod.2017.01.020

    Article  CAS  Google Scholar 

  34. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114:10613–10653. https://doi.org/10.1021/cr5002436

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W, Wang L (2011) The effect of cluster thickness on the adsorption of CH4 on Pdn. Comput Theor Chem 963:236–244. https://doi.org/10.1016/j.comptc.2010.10.027

    Article  CAS  Google Scholar 

  36. Xiao L, Wang L (2007) Methane activation on Pt and Pt4: a density functional theory study. J Phys Chem B 111:1657–1663. https://doi.org/10.1021/jp065288e

    Article  CAS  PubMed  Google Scholar 

  37. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218. https://doi.org/10.1021/ja00544a007

    Article  CAS  Google Scholar 

  38. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066–4073. https://doi.org/10.1063/1.445134

    Article  CAS  Google Scholar 

  39. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096. https://doi.org/10.1016/0040-4020(68)88057-3

    Article  CAS  Google Scholar 

  40. Harper LK, Shoaf AL, Bayse CA (2015) Predicting trigger bonds in explosive materials through wiberg bond index analysis. ChemPhysChem 16:3886–3892. https://doi.org/10.1002/cphc.201500773

    Article  CAS  PubMed  Google Scholar 

  41. Mayer I (2007) Bond order and valence indices: a personal account. J Comput Chem 28:204–221. https://doi.org/10.1002/jcc.20494

    Article  CAS  PubMed  Google Scholar 

  42. Davis JBA, Shayeghi A, Horswell SL, Johnston RL (2015) The Birmingham parallel genetic algorithm and its application to the direct DFT global optimisation of IrN (N = 10–20) clusters. Nanoscale 7:14032–14038. https://doi.org/10.1039/C5NR03774C

    Article  CAS  PubMed  Google Scholar 

  43. Davis JBA, Horswell SL, Johnston RL (2014) Global optimization of 8–10 atom Palladium-Iridium nanoalloys at the DFT Level. J Phys Chem A 118:208–214. https://doi.org/10.1021/jp408519z

    Article  CAS  PubMed  Google Scholar 

  44. Shayeghi A, Götz DA, Davis JBA et al (2015) Pool-BCGA: a parallelised generation-free genetic algorithm for the ab initio global optimisation of nanoalloy clusters. Phys Chem Chem Phys 17:2104–2112. https://doi.org/10.1039/c4cp04323e

    Article  CAS  PubMed  Google Scholar 

  45. Jäger M, Schäfer R, Johnston RL (2018) First principles global optimization of metal clusters and nanoalloys. Adv Phys X 3:1516514. https://doi.org/10.1080/23746149.2018.1516514

    Article  CAS  Google Scholar 

  46. Nava P, Sierka M, Ahlrichs R (2003) Density functional study of palladium clusters. Phys Chem Chem Phys 5:3372–3381. https://doi.org/10.1039/B303347C

    Article  CAS  Google Scholar 

  47. Khatun M, Majumdar RS, Anoop A (2019) A global optimizer for nanoclusters. Front Chem. https://doi.org/10.3389/fchem.2019.00644

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kalita B, Deka RC (2007) Stability of small Pdn (n = 1–7) clusters on the basis of structural and electronic properties: a density functional approach. J Chem Phys 127:244306. https://doi.org/10.1063/1.2806993

    Article  CAS  PubMed  Google Scholar 

  49. Rogan J, Garcia G, Valdivia JA et al (2005) Small Pd clusters: a comparison of phenomenological and ab initio approaches. Phys Rev B 72:115421. https://doi.org/10.1103/PhysRevB.72.115421

    Article  CAS  Google Scholar 

  50. Luo C, Zhou C, Wu J et al (2007) First principles study of small palladium cluster growth and isomerization. Int J Quantum Chem 107:1632–1641. https://doi.org/10.1002/qua.21315

    Article  CAS  Google Scholar 

  51. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  52. Lee C, Yang W, Parr R (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  53. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  54. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  55. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  56. Ehlers AW, Bohme M, Dapprich S et al (1993) A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc–Cu, Y–Ag and La–Au. Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  57. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular-orbital methods.12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  58. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theo Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  59. Liu W, Ren Z, Bosse AT et al (2018) Catalyst-controlled selective functionalization of unactivated C–H bonds in the presence of electronically activated C–H bonds. J Am Chem Soc 140:12247–12255. https://doi.org/10.1021/jacs.8b07534

    Article  CAS  PubMed  Google Scholar 

  60. Glendening ED, Reed AE, Carpenter JE, Weinhold. F NBO Version 3.1

  61. Frisch MJ, Trucks GW, Schlegel HB, et al (2009) Gaussian 09, Revision D.1

  62. Frisch MJ, Trucks GW, Schlegel HB, et al (2016) Gaussian 16, Revision A.3

  63. Moore CE (1952) Atomic Energy Levels. Washington D.C.

  64. Zhang W, Ge Q, Wang L (2003) Structure effects on the energetic, electronic, and magnetic properties of palladium nanoparticles. J Chem Phys 118:5793–5801. https://doi.org/10.1063/1.1557179

    Article  CAS  Google Scholar 

  65. Lee S, Bylander DM, Kleinman L (1989) Pd2: a dimer with two Kohn-Sham triplet ground states. Phys Rev B Condens Matter 39:4916–4920. https://doi.org/10.1103/physrevb.39.4916

    Article  CAS  PubMed  Google Scholar 

  66. Ganteför G, Gausa M, Meiwes-Broer K-H, Lutz HO (1990) Photoelectron spectroscopy of silver and palladium cluster anions. Electron delocalization versus localization. J Chem Soc, Faraday Trans 86:2483–2488. https://doi.org/10.1039/FT9908602483

    Article  Google Scholar 

  67. Ho J, Ervin KM, Polak ML et al (1991) A study of the electronic structures of Pd2- and Pd2 by photoelectron spectroscopy. J Chem Phys 95:4845–4853. https://doi.org/10.1063/1.461702

    Article  CAS  Google Scholar 

  68. Franck EU (1989) J. D. Cox, D. D. Wagman, V. A. Medvedev: CODATA—key values for thermodynamics, aus der Reihe: CODATA, series on thermodynamic properties. Hemisphere Publishing Corporation, New York, Washington, Philadelphia, London, Wiley

  69. Huber KP, Herzberg G (1979) Constants of diatomic molecules. Molecular spectra and molecular structure: IV. Constants of diatomic molecules. Springer, Boston, pp 8–689

    Chapter  Google Scholar 

  70. Valerio G, Toulhoat H (1996) Local, gradient-corrected, and hybrid density functional calculations on Pdn clusters for n = 1–6. J Phys Chem 100:10827–10830. https://doi.org/10.1021/jp960356q

    Article  CAS  Google Scholar 

  71. Seminario JM, Zacarías AG, Castro M (1997) Systematic study of the lowest energy states of Pd, Pd2, and Pd3. Int J Quantum Chem 61:515–523

    Article  CAS  Google Scholar 

  72. Balasubramanian K (1989) Ten low-lying electronic states of Pd3. J Chem Phys 91:307–313. https://doi.org/10.1063/1.457518

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for partial support of this research. Ge thanks Central Washington University (CWU) for granting his sabbatical leave in Fall 2021. The authors also thank CWU for the access to high-performance computers and particularly Bill Glessner for his technical assistance with high-performance computing.

Funding

American Chemical Society Petroleum Research Fund, Grant No. 57389-UR6, Yingbin Ge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingbin Ge.

Ethics declarations

Conflict of interest

The authors declare no competing financial or non-financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 69 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montgomery, S.L., Ge, Y. C–H activation of ethane on palladium clusters: a computational study at the dual levels of density functional theory and coupled-cluster theory. Reac Kinet Mech Cat 136, 2441–2463 (2023). https://doi.org/10.1007/s11144-023-02475-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02475-z

Keywords

Navigation