Skip to main content
Log in

SBA-15-SO3H catalysed room temperature synthesis of 2-aryl benzimidazoles and benzothiazoles

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Herein, we report the synthesis of sulfonic acid functionalized SBA-15 by post-synthetic functionalization of mesoporous SBA-15. The successful incorporation of sulfonic acid moiety into the SBA-15 framework could be confirmed by physico-chemical characterization. The nature of acidic sites was confirmed using temperature-programmed desorption of ammonia. A simple synthetic route for the synthesis of 2-aryl benzimidazoles and benzothiazoles using SBA-15-SO3H as a green heterogeneous catalyst at room temperature was investigated. 100% conversion and an isolated yield of 70–85% could be obtained. The green synthetic approach offers reaction under ambient conditions, a simple work-up procedure, good to excellent yield and easy product isolation along with good recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Rogers L, Jensen KF (2019) Continuous manufacturing–the green chemistry promise? Green Chem 21(13):3481–3498. https://doi.org/10.1039/c9gc00773c

    Article  CAS  Google Scholar 

  2. Zimmerman JB, Anastas PT, Erythropel HC, Leitner W (2020) Designing for a green chemistry future. Science 367(6476):397–400. https://doi.org/10.1126/science.aay3060

    Article  CAS  PubMed  Google Scholar 

  3. Loste N, Chinarro D, Gomez M, Roldan E, Giner B (2020) Assessing awareness of green chemistry as a tool for advancing sustainability. J Clean Prod 256:120392. https://doi.org/10.1016/j.jclepro.2020.120392

    Article  CAS  Google Scholar 

  4. Sheldon RA (2018) Metrics of green chemistry and sustainability: past, present and future. ACS Sustain Chem Eng 6(1):32–48. https://doi.org/10.1021/acssuschemeng.7b03505

    Article  CAS  Google Scholar 

  5. Clark JH (2001) Catalysis for green chemistry. Pure Appl Chem 73(1):103–111. https://doi.org/10.1351/pac200173010103

    Article  CAS  Google Scholar 

  6. Gupta P, Paul S (2014) Solid acids: green alternatives for acid catalysis. Catal Today 236:153–170. https://doi.org/10.1016/j.cattod.2014.04.010

    Article  CAS  Google Scholar 

  7. Bai YB, Zhang AL, Tang JJ, Gao JM (2013) Synthesis and antifungal activity of 2-chloromethyl-1 H-benzimidazole derivatives against phytopathogenic fungi in vitro. J Agric Food Chem 61(11):2789–2795. https://doi.org/10.1021/jf3053934

    Article  CAS  PubMed  Google Scholar 

  8. Raut CN, Bharambe SM, Pawar YA, Mahulikar PP (2011) Microwave-mediated synthesis and antibacterial activity of some novel 2- (substituted biphenyl) benzimidazoles via Suzuki-Miyaura cross coupling reaction and their N-substituted derivatives. J Heterocycl Chem 48(2):419–425. https://doi.org/10.1002/jhet.610

    Article  CAS  Google Scholar 

  9. Al-Mohammed NN, Alias Y, Abdullah Z, Shakir RM, Taha EM, Hamid AA (2013) Synthesis and antibacterial evaluation of some novel imidazole and benzimidazole sulfonamides. Molecules 18(10):11978–11995. https://doi.org/10.3390/molecules181011978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arora RK, Kaur N, Bansal Y, Bansal G (2014) Novel coumarin–benzimidazole derivatives as antioxidants and safer anti-inflammatory agents. Acta Pharm Sinica B 4(5):368–375. https://doi.org/10.1016/j.apsb.2014.07.001

    Article  Google Scholar 

  11. Kuş C, Ayhan-Kılcıgil G, Özbey S, Kaynak FB, Kaya M, Çoban T, Can-Eke B (2008) Synthesis and antioxidant properties of novel N-methyl-1, 3, 4-thiadiazol-2-amine and 4-methyl-2H-1, 2, 4-triazole-3 (4H)-thione derivatives of benzimidazole class. Bioorg Med Chem 16(8):4294–4303. https://doi.org/10.1016/j.bmc.2008.02.077

    Article  CAS  PubMed  Google Scholar 

  12. Alasmary FA, Snelling AM, Zain ME, Alafeefy AM, Awaad AS, Karodia N (2015) Synthesis and evaluation of selected benzimidazole derivatives as potential antimicrobial agents. Molecules 20(8):15206–15223. https://doi.org/10.3390/molecules200815206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Camacho J, Barazarte A, Gamboa N, Rodrigues J, Rojas R, Vaisberg A, Gilman R, Charris J (2011) Synthesis and biological evaluation of benzimidazole-5-carbohydrazide derivatives as antimalarial, cytotoxic and antitubercular agents. Bioorg Med Chem 19(6):2023–2029. https://doi.org/10.1016/j.bmc.2011.01.050

    Article  CAS  PubMed  Google Scholar 

  14. Huang ST, Hsei IJ, Chen C (2006) Synthesis and anticancer evaluation of bis (benzimidazoles), bis (benzoxazoles) and benzothiazoles. Bioorg Med Chem 14(17):6106–6119. https://doi.org/10.1016/j.bmc.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  15. Hutchinson I, Chua MS, Browne HL, Trapani V, Bradshaw TD, Westwell AD, Stevens MF (2001) Antitumor benzothiazoles. 14. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl) benzothiazoles. J Med Chem 44(9):1446–1455. https://doi.org/10.1021/jm001104n

    Article  CAS  PubMed  Google Scholar 

  16. Singh M, Singh SK, Gangwar M, Nath G, Singh SK (2014) Design, synthesis and mode of action of some benzothiazole derivatives bearing an amide moiety as antibacterial agents. RSC Adv 24(36):19013–19023. https://doi.org/10.1039/C4RA02649G

    Article  Google Scholar 

  17. Moreno-Díaz H, Villalobos-Molina R, Ortiz-Andrade R, Díaz-Coutiño D, Medina-Franco JL, Webster SP, Binnie M, Estrada-Soto S, Ibarra-Barajas M, Leon-Rivera I, Navarrete-Vázquez G (2008) Antidiabetic activity of N-(6-substituted-1, 3-benzothiazol-2-yl) benzenesulfonamides. Bioorg Med Chem Lett 18(9):2871–2877. https://doi.org/10.1016/j.bmcl.2008.03.086

    Article  CAS  PubMed  Google Scholar 

  18. Singh M, Singh SK, Gangwar M, Nath G, Singh SK (2015) Design, synthesis and mode of action of novel 2-(4-aminophenyl) benzothiazole derivatives bearing semicarbazone and thiosemicarbazone moiety as potent antimicrobial agents. Med Chem Res. https://doi.org/10.1007/s00044-015-1479-5

    Article  Google Scholar 

  19. Nagarajan SR, De Crescenzo GA, Getman DP, Lu HF, Sikorski JA, Walker JL, McDonald JJ, Houseman KA, Kocan GP, Kishore N, Mehta PP (2003) Discovery of novel benzothiazolesulfonamides as potent inhibitors of HIV-1 protease. Bioorg Med Chem 11(22):4769–4777. https://doi.org/10.1016/j.bmc.2003.07.001

    Article  CAS  PubMed  Google Scholar 

  20. Su X, Vicker N, Ganeshapillai D, Smith A, Purohit A, Reed MJ, Potter BV (2006) Benzothiazole derivatives as novel inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. Mol Cell Endocrinol 248(1–2):214–217. https://doi.org/10.1016/j.mce.2005.10.022

    Article  CAS  PubMed  Google Scholar 

  21. Wang R, Lu XX, Yu XQ, Shi L, Sun Y (2007) Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation. J Mol Catal A Chem 266(1–2):198–201. https://doi.org/10.1016/j.molcata.2006.04.071

    Article  CAS  Google Scholar 

  22. Wen X, El Bakali J, Deprez-Poulain R, Deprez B (2012) Efficient propylphosphonic anhydride (® T3P) mediated synthesis of benzothiazoles, benzoxazoles and benzimidazoles. Tetrahedron Lett 53(19):2440–2443. https://doi.org/10.1016/j.tetlet.2012.03.007

    Article  CAS  Google Scholar 

  23. Nadaf RN, Siddiqui SA, Daniel T, Lahoti RJ, Srinivasan KV (2004) Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions. J Mol Catal A Chem 214(1):155–160. https://doi.org/10.1016/j.molcata.2003.10.064

    Article  CAS  Google Scholar 

  24. Matsushita H, Lee SH, Joung M, Clapham B, Janda KD (2004) Smart cleavage reactions: the synthesis of benzimidazoles and benzothiazoles from polymer-bound esters. Tetrahedron Lett 45(2):313–316. https://doi.org/10.1016/j.tetlet.2003.10.168

    Article  CAS  Google Scholar 

  25. Yang D, Zhu X, Wei W, Sun N, Yuan L, Jiang M, You J, Wang H (2014) Magnetically recoverable and reusable CuFe2O4 nanoparticle-catalyzed synthesis of benzoxazoles, benzothiazoles and benzimidazoles using dioxygen as oxidant. RSC Adv 4(34):17832–17839. https://doi.org/10.1039/C4RA00559G

    Article  CAS  Google Scholar 

  26. Bahrami K, Khodaei MM, Nejati A (2010) Synthesis of 1, 2-disubstituted benzimidazoles, 2-substituted benzimidazoles and 2-substituted benzothiazoles in SDS micelles. Green Chem 12(7):1237–1241. https://doi.org/10.1039/C000047G

    Article  CAS  Google Scholar 

  27. Chen YX, Qian LF, Zhang W, Han B (2008) Efficient aerobic oxidative synthesis of 2-substituted benzoxazoles, benzothiazoles and benzimidazoles catalyzed by 4-methoxy-TEMPO. Angew Chem Int Ed 47(48):9330–9333. https://doi.org/10.1002/anie.200803381

    Article  CAS  Google Scholar 

  28. Ghosh P, Subba R (2015) MgCl2 6H2O catalyzed highly efficient synthesis of 2-substituted-1H-benzimidazoles. Tetrahedron Lett 56(21):2691–2694. https://doi.org/10.1016/j.tetlet.2015.04.001

    Article  CAS  Google Scholar 

  29. Brahmachari G, Laskar S, Barik P (2013) Magnetically separable MnFe2O4 nano-material: an efficient and reusable heterogeneous catalyst for the synthesis of 2-substituted benzimidazoles and the extended synthesis of quinoxalines at room temperature under aerobic conditions. RSC Adv 3(34):14245–14253. https://doi.org/10.1039/C3RA41457D

    Article  CAS  Google Scholar 

  30. Naeimi H, Babaei Z (2016) MnO2 nanoparticles as efficient oxidant for ultrasound-assisted synthesis of 2-substituted benzimidazoles under mild conditions. Polycyclic Aromat Compd 36(4):490–505. https://doi.org/10.1080/10406638.2015.1014970

    Article  CAS  Google Scholar 

  31. Azizian J, Torabi P, Noei J (2016) Synthesis of benzimidazoles and benzoxazoles using TiCl3OTf in ethanol at room temperature. Tetrahedron Lett 57(2):185–188. https://doi.org/10.1016/j.tetlet.2015.11.092

    Article  CAS  Google Scholar 

  32. Shingalapur RV, Hosamani KM (2010) An efficient and eco-friendly tungstate promoted zirconia (WO x/ZrO2) solid acid catalyst for the synthesis of 2-aryl benzimidazoles. Catal Lett 137:63–68. https://doi.org/10.1007/s10562-010-0340-1

    Article  CAS  Google Scholar 

  33. Yang ZJ, Gong QT, Yu Y, Lu WF, Wu ZN, Wang N, Yu XQ (2021) Fast and high-efficiency synthesis of 2-substituted benzothiazoles via combining enzyme catalysis and photoredox catalysis in one-pot. Bioorg Chem 107:104607. https://doi.org/10.1016/j.bioorg.2020.104607

    Article  CAS  PubMed  Google Scholar 

  34. Asatkar A, Lambat TL, Mahmood S, Mondal A, Singh M, Banerjee S (2020) Facile protocol for the synthesis of benzothiazole, benzoxazole and N-benzimidazole derivatives using rice husk derived chemically activated carbon. Mater Today Proc 29:738–742. https://doi.org/10.1016/j.matpr.2020.04.510

    Article  CAS  Google Scholar 

  35. Sharghi H, Mashhadi E, Aberi M, Aboonajmi J (2021) Synthesis of novel benzimidazoles and benzothiazoles via furan-2-carboxaldehydes, o-phenylenediamines, and 2-aminothiophenol using Cu (II) Schiff-base@ SiO2 as a nanocatalyst. Appl Organomet Chem 35(9):e6330. https://doi.org/10.1002/aoc.6330

    Article  CAS  Google Scholar 

  36. Zakeri M, Moghadam M, Mirkhani V, Tangestaninejad S, Mohammadpoor-Baltork I, Pahlevanneshan Z (2018) Copper containing nanosilica thioalated dendritic material: a recyclable catalyst for synthesis of benzimidazoles and benzothiazoles. Appl Organomet Chem 32(1):e3937. https://doi.org/10.1002/aoc.3937

    Article  CAS  Google Scholar 

  37. Nasr-Esfahani M, Mohammadpoor-Baltork I, Khosropour AR et al (2013) Synthesis and characterization of Cu(II) containing nanosilica triazine dendrimer: a recyclable nanocomposite material for the synthesis of benzimidazoles, benzothiazoles, bis-benzimidazoles and bis-benzothiazoles. J Mol Catal A Chem 379:243–254. https://doi.org/10.1016/j.molcata.2013.08.009

    Article  CAS  Google Scholar 

  38. Prajapti SK, Nagarsenkar A, Guggilapu SD, Babu BN (2015) B(C6F5)3 as versatile catalyst: an efficient and mild protocol for the one-pot synthesis of functionalized piperidines and 2-substituted benzimidazole derivatives. Tetrahedron Lett 56:6795–6799. https://doi.org/10.1016/j.tetlet.2015.10.074

    Article  CAS  Google Scholar 

  39. Nguyen TT, Nguyen XTT, Nguyen TLH, Tran PH (2019) Synthesis of benzoxazoles, benzimidazoles and benzothiazoles using a brønsted acidic ionic liquid gel as an efficient heterogeneous catalyst under a solvent-free condition. ACS Omega 4:368–373. https://doi.org/10.1021/acsomega.8b02932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karthik M, Suresh P (2018) Brønsted acidic reduced graphene oxide as a sustainable carbocatalyst: a selective method for the synthesis of C-2-substituted benzimidazole. New J Chem 42:17931–17938. https://doi.org/10.1039/C8NJ03257B

    Article  CAS  Google Scholar 

  41. Senapak W, Saeeng R, Jaratjaroonphong J, Sirion U (2018) Brönsted acid-surfactant-combined ionic liquid catalyzed green synthesis of 2-alkyl and 2-arylbenzothiazoles in water: reusable catalyst and metal-free conditions. Mol Catal 458:97–105. https://doi.org/10.1016/j.mcat.2018.06.017

    Article  CAS  Google Scholar 

  42. Mobinikhaledi A, Moghanian H, Ghazvini SMBH, Dalvand A (2018) Copper containing poly(melamine-terephthaldehyde)-magnetite mesoporous nanoparticles: a highly active and recyclable catalyst for the synthesis of benzimidazole derivatives. J Porous Mater 25:1123–1134. https://doi.org/10.1007/s10934-017-0524-9

    Article  CAS  Google Scholar 

  43. Sharma P, Gupta M, Kant R, Gupta VK (2015) Formation of a nanorod shaped ionogel and its high catalytic activity for one-pot synthesis of benzothiazoles. New J Chem 39:5116–5120. https://doi.org/10.1039/C5NJ00454C

    Article  CAS  Google Scholar 

  44. Sankar V, Karthik P, Neppolian B, Sivakumar B (2020) Metal–organic framework mediated expeditious synthesis of benzimidazole and benzothiazole derivatives through an oxidative cyclization pathway. New J Chem 44:1021–1027. https://doi.org/10.1039/C9NJ04431K

    Article  CAS  Google Scholar 

  45. Garazhian Z, Rezaeifard A, Jafarpour M (2019) A nanoscopic icosahedral Mo 72 Fe 30 cluster catalyzes the aerobic synthesis of benzimidazoles. RSC Adv 9:34854–34861. https://doi.org/10.1039/C9RA06581D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Erigoni A, Diaz U (2021) Porous silica-based organic-inorganic hybrid catalysts: a review. Catalysts 11(1):79. https://doi.org/10.3390/catal11010079

    Article  CAS  Google Scholar 

  47. Berdini F, Otalvaro JO, Avena M, Brigante M (2022) Photodegradation of doxycycline in water induced by TiO2-MCM-41. Kinetics, TOC evolution and reusability. Result Eng 16:100765. https://doi.org/10.1016/j.rineng.2022.100765

    Article  CAS  Google Scholar 

  48. Kandasamy T, Banu M, Shanthi RV, Sivasanker S (2022) Suitability of different supported Ru, Pt and Ni catalysts for the hydrogenolysis of sorbitol. Result Eng 15:100594. https://doi.org/10.1016/j.rineng.2022.100594

    Article  CAS  Google Scholar 

  49. Thahir R, Irwan M, Alwathan A, Ramli R (2021) Effect of temperature on the pyrolysis of plastic waste using zeolite ZSM-5 using a refinery distillation bubble cap plate column. Result Eng 11:100231. https://doi.org/10.1016/j.rineng.2021.100231

    Article  CAS  Google Scholar 

  50. Diaz U, Brunel D, Corma A (2013) Catalysis using multifunctional organosiliceous hybrid materials. Chem Soc Rev 42(9):4083–4097. https://doi.org/10.1039/C2CS35385G

    Article  CAS  PubMed  Google Scholar 

  51. Fernandes AE, Jonas AM (2019) Design and engineering of multifunctional silica-supported cooperative catalysts. Catal Today 334:173–186. https://doi.org/10.1016/j.cattod.2018.11.040

    Article  CAS  Google Scholar 

  52. Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H (2020) Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications. Nanoscale 12(21):11333–11363. https://doi.org/10.1039/D0NR00732C

    Article  CAS  PubMed  Google Scholar 

  53. Zhao H, Han H (2020) Synthesis and characterization of functionalized SBA-15 silica through template removal. J Solid-State Chem 282:121074. https://doi.org/10.1016/j.jssc.2019.121074

    Article  CAS  Google Scholar 

  54. Manayil JC, Inocencio CV, Lee AF, Wilson K (2016) Mesoporous sulfonic acid silicas for pyrolysis bio-oil upgrading via acetic acid esterification. Green Chem 18(5):1387–1394. https://doi.org/10.1039/C5GC01889G

    Article  CAS  Google Scholar 

  55. Posada JA, Cardona CA, Giraldo O (2010) Comparison of acid sulfonic mesostructured silicas for 1-butylacetate synthesis. Mater Chem Phys 121(1–2):215–222. https://doi.org/10.1016/j.matchemphys.2010.01.027

    Article  CAS  Google Scholar 

  56. Testa ML, La Parola V, Venezia AM (2014) Transesterification of short chain esters using sulfonic acid-functionalized hybrid silicas: effect of silica morphology. Catal Today 223:115–121. https://doi.org/10.1016/j.cattod.2013.09.029

    Article  CAS  Google Scholar 

  57. González MD, Cesteros Y, Llorca J, Salagre P (2012) Boosted selectivity toward high glycerol tertiary butyl ethers by microwave-assisted sulfonic acid-functionalization of SBA-15 and beta zeolite. J Catal 290:202–209. https://doi.org/10.1016/j.jcat.2012.03.019

    Article  CAS  Google Scholar 

  58. Machado J, Castanheiro JE, Matos I, Ramos AM, Vital J, Fonseca IM (2012) SBA-15 with sulfonic acid groups as a green catalyst for the acetoxylation of α-pinene. Microporous Mesoporous Mater 163:237–242. https://doi.org/10.1016/j.micromeso.2012.07.028

    Article  CAS  Google Scholar 

  59. Shah KA, Parikh JK, Maheria KC (2014) Biodiesel synthesis from acid oil over large pore sulfonic acid-modified mesostructured SBA-15: process optimization and reaction kinetics. Catal Today 237:29–37. https://doi.org/10.1016/j.cattod.2014.04.028

    Article  CAS  Google Scholar 

  60. Crisci AJ, Tucker MH, Lee MY, Jang SG, Dumesic JA, Scott SL (2011) Acid-functionalized SBA-15-type silica catalysts for carbohydrate dehydration. ACS Catal 1(7):719–728. https://doi.org/10.1021/cs2001237

    Article  CAS  Google Scholar 

  61. Sasidharan M, Bhaumik A (2013) Selective conversion of nitroalcohols to nitroolefins over sulfonic acid functionalized mesoporous SBA-15 material. J Mol Catal A Chem 367:1–6. https://doi.org/10.1016/j.molcata.2012.11.006

    Article  CAS  Google Scholar 

  62. Oyola-Rivera O, He J, Huber GW, Dumesic JA, Cardona-Martínez N (2022) Catalytic conversion of cellulose to levoglucosenone using propylsulfonic acid functionalized SBA-15 and H2SO4 in tetrahydrofuran. Biomass Bioenergy 156:106315. https://doi.org/10.1016/j.biombioe.2021.106315

    Article  CAS  Google Scholar 

  63. Cheng X, Feng Q, Ma D, Chen H, Zeng X, Xing F, Teng J (2021) Efficient catalytic production of levulinic acid over hydrothermally stable propyl sulfonic acid functionalized SBA-15 in γ-valerolactone-water system. J Environ Chem Eng 9(4):105747. https://doi.org/10.1016/j.jece.2021.105747

    Article  CAS  Google Scholar 

  64. Wang L, Zhang L, Li H, Ma Y, Zhang R (2019) High selective production of 5-hydroxymethylfurfural from fructose by sulfonic acid functionalized SBA-15 catalyst. Compos B Eng 156:88–94. https://doi.org/10.1016/j.compositesb.2018.08.044

    Article  CAS  Google Scholar 

  65. Samanta PK, Banerjee R, Richards RM, Biswas P (2018) Mesoporous silica supported ytterbium as catalyst for synthesis of 1, 2-disubstituted benzimidazoles and 2-substituted benzimidazoles. Appl Organomet Chem 32(10):e4507. https://doi.org/10.1002/aoc.4507

    Article  CAS  Google Scholar 

  66. Rajabi F, De S, Luque R (2015) An efficient and green synthesis of benzimidazole derivatives using SBA-15 supported cobalt nanocatalysts. Catal Lett 145:1566–1570. https://doi.org/10.1007/s10562-015-1546-z

    Article  CAS  Google Scholar 

  67. Pei M, Luo X, Tang Q, Huang N, Wang L (2022) The application research on Cu-Al@ SBA-15 bimetallic synergistic effect in the CX bond sequential assembly. Catal Commun 172:106548. https://doi.org/10.1016/j.catcom.2022.106548

    Article  CAS  Google Scholar 

  68. Pourhasan-Kisomi R, Shirini F, Golshekan M (2021) Synthetic applications of a new magnetic mesoporous nanocomposite catalyst Fe3O4@ MCM-41@ NH-SO3H. Org Prep Proced Int 53(2):166–175. https://doi.org/10.1080/00304948.2020.1870398

    Article  CAS  Google Scholar 

  69. Gholamian F, Hajjami M (2019) Functionalization of hexagonal mesoporous silicas (HMS) for the synthesis of efficient catalyst and investigation of its catalytic activity in the synthesis of 1-amidoalkyl-2-naphthols and 2-substituted benzimidazoles. React Kinet Mech Catal 128:867–884. https://doi.org/10.1007/s11144-019-01663-0

    Article  CAS  Google Scholar 

  70. Vasu A, Naresh M, Sai GK, Rohini YD, Murali B, Ramulamma M, Ramunaidu A, Narender N (2021) A heterogeneous catalytic strategy for facile production of benzimidazoles and quinoxalines from primary amines using the Al-MCM-41 catalyst. Green Chem 23(23):9439–9446. https://doi.org/10.1039/D1GC02627E

    Article  CAS  Google Scholar 

  71. Mahdavinia GH, Rostamizadeh S, Amani AM, Sepehrian H (2012) Fast and efficient method for the synthesis of 2-arylbenzimidazoles using MCM-41-SO3H. Heterocycl Commun 18(1):33–37. https://doi.org/10.1515/hc-2011-0056

    Article  CAS  Google Scholar 

  72. Samanta PK, Biswas R, Das T, Nandi M, Adhikary B, Richards RM, Biswas P (2019) Mesoporous silica supported samarium as recyclable heterogeneous catalyst for synthesis of 5-substituted tetrazole and 2-substituted benzothiazole. J Porous Mater 26:145–155. https://doi.org/10.1007/s10934-018-0626-z

    Article  CAS  Google Scholar 

  73. Kalhor M, Rezaee-Baroonaghi F, Dadras A, Zarnegar Z (2019) Synthesis of new TCH/Ni-based nanocomposite supported on SBA-15 and its catalytic application for preparation of benzimidazole and perimidine derivatives. Appl Organomet Chem 33(5):e4784. https://doi.org/10.1002/aoc.4784

    Article  CAS  Google Scholar 

  74. Pesyan NN, Batmani H, Havasi F (2019) Copper supported on functionalized MCM-41 as a novel and a powerful heterogeneous nanocatalyst for the synthesis of benzothiazoles. Polyhedron 158:248–254. https://doi.org/10.1016/j.poly.2018.11.005

    Article  CAS  Google Scholar 

  75. Yadav P, Kakati P, Singh P, Awasthi SK (2021) Application of sulfonic acid fabricated cobalt ferrite nanoparticles as effective magnetic nanocatalyst for green and facile synthesis of benzimidazoles. Appl Catal A Gen 612:118005. https://doi.org/10.1016/j.apcata.2021.118005

    Article  CAS  Google Scholar 

  76. Swami MB, Jadhav AH, Mathpati SR, Guge HG, Patil SG (2017) Eco-friendly highly efficient solvent free synthesis of benzimidazole derivatives over sulfonic acid functionalized graphene oxide in ambient condition. Res Chem Intermed 43:2033–2053. https://doi.org/10.1007/s11164-016-2745-y

    Article  CAS  Google Scholar 

  77. Goswami M, Dutta MM, Phukan P (2018) Sulfonic-acid-functionalized activated carbon made from tea leaves as green catalyst for synthesis of 2-substituted benzimidazole and benzothiazole. Res Chem Intermed 44:1597–1615. https://doi.org/10.1007/s11164-017-3187-x

    Article  CAS  Google Scholar 

  78. Zareyee D, Tuyehdarvary SR, Allahgholipour L, Hossaini Z, Khalilzadeh MA (2016) Catalytic performance of hydrophobic sulfonated nanocatalysts CMK-5-SO3H and SBA-15-Ph-PrSO3H for ecofriendly synthesis of 2-substituted benzimidazoles in water. Synlett 27(08):1251–1254. https://doi.org/10.1055/s-0035-1561354

    Article  CAS  Google Scholar 

  79. Mohammadi Ziarani G, Badiei A, Shakiba Nahad M, Ghadim Alizadeh S (2012) Synthesis of 1, 2-disubstituted benzimidazoles in the presence of SBA-Pr-SO3H as a nano solid acid catalyst. J Nanostructures 2(2):213–220. https://doi.org/10.7508/JNS.2012.02.009

    Article  Google Scholar 

  80. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036. https://doi.org/10.1021/ja974025i

    Article  CAS  Google Scholar 

  81. Soumini C, Sugunan S, Haridas S (2019) Copper oxide modified SBA-15 for the selective vapour phase dehydrogenation of cyclohexanol to cyclohexanone. J Porous Mater 26:631–640. https://doi.org/10.1007/s10934-018-0658-4

    Article  CAS  Google Scholar 

  82. Lourenço JP, Macedo MI, Fernandes A (2012) Sulfonic-functionalized SBA-15 as an active catalyst for the gas-phase dehydration of glycerol. Catal Commun 19:105–109. https://doi.org/10.1016/j.catcom.2011.12.029

    Article  CAS  Google Scholar 

  83. Jeenpadiphat S, Björk EM, Odén M, Tungasmita DN (2015) Propylsulfonic acid functionalized mesoporous silica catalysts for esterification of fatty acids. J Mol Catal A: Chem 410:253–259. https://doi.org/10.1016/j.molcata.2015.10.002

    Article  CAS  Google Scholar 

  84. Shi X, Wu Y, Yi H, Rui G, Li P, Yang M, Wang G (2011) Selective preparation of furfural from xylose over sulfonic acid functionalized mesoporous Sba-15 materials. Energies 4(4):669–684. https://doi.org/10.3390/en4040669

    Article  CAS  Google Scholar 

  85. Van Grieken R, Melero JA, Morales G (2005) Fries rearrangement of phenyl acetate over sulfonic modified mesostructured SBA-15 materials. Appl Catal A 289(2):143–152. https://doi.org/10.1016/j.apcata.2005.04.059

    Article  CAS  Google Scholar 

  86. Van Grieken R, Melero JA, Morales G (2006) Etherification of benzyl alcohols with 1-hexanol over organosulfonic acid mesostructured materials. J Mol Catal A: Chem 256(1–2):29–36. https://doi.org/10.1016/j.molcata.2006.04.040

    Article  CAS  Google Scholar 

  87. Karimi B, Zareyee D (2008) Design of a highly efficient and water-tolerant sulfonic acid nanoreactor based on tunable ordered porous silica for the von Pechmann reaction. Org Lett 10(18):3989–3992. https://doi.org/10.1021/ol8013107

    Article  CAS  PubMed  Google Scholar 

  88. Wang Y, Wang D, Tan M, Jiang B, Zheng J, Tsubaki N, Wu M (2015) Monodispersed hollow SO3H-functionalized carbon/silica as efficient solid acid catalyst for esterification of oleic acid. ACS Appl Mater Interfaces 7(48):26767–26775

    Article  CAS  PubMed  Google Scholar 

  89. Hermida L, Abdullah AZ, Mohamed AR (2011) Synthesis of monoglyceride through glycerol esterification with lauric acid over propyl sulfonic acid post-synthesis functionalized SBA-15 mesoporous catalyst. Chem Eng J 174(2–3):668–676. https://doi.org/10.1016/j.cej.2011.09.072

    Article  CAS  Google Scholar 

  90. Yadav P, Kakati P, Singh P, Awasthi SK (2015) Application of sulfonic acid fabricated cobalt ferrite nanoparticles as effective magnetic nanocatalyst for green and facile synthesis of benzimidazoles. Appl Catal A General 612:118005. https://doi.org/10.1016/j.apcata.2021.118005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from UGC in the form of fellowship to Arun.R. The analysis services provided by SAIF-STIC, CUSAT is gratefully acknowledged. The funding from UGC-SAP, DST-FIST, SMNRI and RUSA 2.0 grants for general facility creation and upgradation is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suja Haridas.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4513 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, R., Athira, M.P., Remello, S.N. et al. SBA-15-SO3H catalysed room temperature synthesis of 2-aryl benzimidazoles and benzothiazoles. Reac Kinet Mech Cat 136, 2277–2294 (2023). https://doi.org/10.1007/s11144-023-02464-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02464-2

Keywords

Navigation