Skip to main content
Log in

Application of the metallized titanate nanorod in the photodegradation of methyl orange

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The aim of this work is to study the catalytic activity of titanate nanorods materials doped by platinum and gold nanoparticles in the photodegradation reaction of methyl orange. Nanorods are metalized by deposition precipitation with urea and impregnation at 2 wt% of metal. The characteristics of materials are determined using the following methods: photoelectron spectroscopy, transmission electron microscopy, UV–Vis in reflection diffuse (RDS/UV–Vis), X-ray diffraction, N2 adsorption–desorption and ICP analysis. The results of characterization proved the formation of nanorods structure using hydrothermal method and an almost total homogeneous deposition of the metallic nanoparticles on the nanorod surface. All materials are used in the photodegradation of organic pollutant dye (methyl orange) under UV or visible irradiations. Pt doped nanorods shows the best catalytic activity in the photodegradation of dye. The conversion and mineralization rates achieved 100 and 78%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B 39:75–90

    Article  CAS  Google Scholar 

  2. Serpone N (2018) Heterogeneous photocatalysis and prospects of TiO2-based photocatalytic DeNOxing the atmospheric environment. Catalysts 8:553

    Article  Google Scholar 

  3. Saadati M, Akhavan O, Fazli H (2021) Single-layer MoS2–MoO3–x heterojunction nanosheets with simultaneous photoluminescence and co-photocatalytic features. Catalysts 11:1445

    Article  CAS  Google Scholar 

  4. Stylidi M, Kondarides DI, Verykios XE (2003) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl Catal B 40:271–286

    Article  CAS  Google Scholar 

  5. Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  PubMed  Google Scholar 

  6. Cai C, Zhang Z, Liu J, Shan N, Zhang H, Dionysiou DD (2016) Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange II in water. Appl Catal B 182:456–468

    Article  CAS  Google Scholar 

  7. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    Article  CAS  PubMed  Google Scholar 

  8. Qin L-Z, Liao B, Dong X-L, Wu X-Y, Hou X-G, Liu A-D (2009) Ag/Fe:TiO2 nano-catalysts prepared by Fe ion implantation and Ag nanoparticle deposition by electron beam irradiation. Nucl Instrum Methods Phys Res Sect B 267:1077–1080

    Article  CAS  Google Scholar 

  9. Fernandes A, Makoś P, Wang Z, Boczkaj G (2020) Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents. Chem Eng J 391:123488

    Article  CAS  Google Scholar 

  10. Ebrahimi M, Akhavan O (2022) Nanomaterials for photocatalytic degradations of analgesic, mucolytic and anti-biotic/viral/inflammatory drugs widely used in controlling SARS-CoV-2. Catalysts 12:667

    Article  CAS  Google Scholar 

  11. Poyatos JM, Muñio M, Almecija M, Torres J, Hontoria E, Osorio F (2010) Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut 205:187–204

    Article  CAS  Google Scholar 

  12. Hernández R, Durón-Torres SM, Esquivel K, Guzmán C (2017) Microwave assisted sol–gel synthesis and characterization of M–TiO2 (M= Pt, Au) photocatalysts. Characterization of metals and alloys. Springer International Publishing, Cham, pp 183–189

    Chapter  Google Scholar 

  13. Macwan D, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686

    Article  CAS  Google Scholar 

  14. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  PubMed  Google Scholar 

  15. Liŭ D, Li Z, Wang W, Wang G, Liú D (2016) Hematite doped magnetic TiO2 nanocomposites with improved photocatalytic activity. J Alloys Compd 654:491–497

    Article  Google Scholar 

  16. Lei X, Xue X, Yang H (2014) Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr (VI) under visible light. Appl Surf Sci 321:396–403

    Article  CAS  Google Scholar 

  17. Liu L, Gao F, Zhao H, Li Y (2013) Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl Catal B 134:349–358

    Article  Google Scholar 

  18. Akhavan O (2009) Lasting antibacterial activities of Ag–TiO2/Ag/a–TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interface Sci 336:117–124

    Article  CAS  PubMed  Google Scholar 

  19. Rosseler O, Shankar MV, Du Karkmaz-Le M, Schmidlin L, Keller N, Keller V (2010) Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/rutile) photocatalysts: influence of noble metal and porogen promotion. J Catal 269:179–190

    Article  CAS  Google Scholar 

  20. Maicu M, Hidalgo M, Colón G, Navío JA (2011) Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol. J Photochem Photobiol A 217:275–283

    Article  CAS  Google Scholar 

  21. Zou X, Dong Y, Zhang X, Cui Y (2016) Synthesize and characterize of Ag3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity under visible light irradiation. Appl Surf Sci 366:173–180

    Article  CAS  Google Scholar 

  22. Liu J, Li Y, Ke J, Wang S, Wang L, Xiao H (2018) Black NiO–TiO2 nanorods for solar photocatalysis: Recognition of electronic structure and reaction mechanism. Appl Catal B 224:705–714

    Article  CAS  Google Scholar 

  23. Meng X-D, Wang D-Z, Liu J-H, Zhang S-Y (2004) Preparation and characterization of sodium titanate nanowires from brookite nanocrystallites. Mater Res Bull 39:2163–2170

    Article  CAS  Google Scholar 

  24. Watanabe M, Uchida M, Motoo S (1987) Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. J Electroanal Chem Interfacial Electrochem 229:395–406

    Article  CAS  Google Scholar 

  25. Arico A, Shukla A, Kim H, Park S, Min M, Antonucci V (2001) An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Appl Surf Sci 172:33–40

    Article  CAS  Google Scholar 

  26. Parkinson C, Walker M, McConville C (2003) Reaction of atomic oxygen with a Pt (111) surface: chemical and structural determination using XPS, CAICISS and LEED. Surf Sci 545:19–33

    Article  CAS  Google Scholar 

  27. Kim M-J, Na H-J, Lee KC, Yoo EA, Lee M (2003) Preparation and characterization of Au–Ag and Au–Cu alloy nanoparticles in chloroform. J Mater Chem 13:1789–1792

    Article  CAS  Google Scholar 

  28. Si R, Flytzani-Stephanopoulos M (2008) Shape and crystal-plane effects of nanoscale ceria on the activity of Au–CeO2 catalysts for the water–gas shift reaction. Angew Chem 120:2926–2929

    Article  Google Scholar 

  29. Gluhoi AC, Bogdanchikova N, Nieuwenhuys BE (2005) Alkali (earth)-doped Au/Al2O3 catalysts for the total oxidation of propene. J Catal 232:96–101

    Article  CAS  Google Scholar 

  30. Sangpour P, Akhavan O, Moshfegh A, Roozbehi M (2007) Formation of gold nanoparticles in heat-treated reactive co-sputtered Au–SiO2 thin films. Appl Surf Sci 254:286–290

    Article  CAS  Google Scholar 

  31. Ameur N, Bedrane S, Bachir R, Choukchou-Braham A (2013) Influence of nanoparticles oxidation state in gold based catalysts on the product selectivity in liquid phase oxidation of cyclohexene. J Mol Catal A: Chem 374–375:1–6

    Article  Google Scholar 

  32. Ameur N, Berrichi A, Bedrane S, Bachir R (2014) Preparation and characterization of Au/Al2O3 and Au–Fe/Al2O3 materials, active and selective catalysts in oxidation of cyclohexene. Adv Mater Res 856:48–52

    Article  CAS  Google Scholar 

  33. Simakov A, Tuzovskaya I, Bogdanchikova N, Pestryakov A, Avalos M, Farias M, Smolentseva E (2008) Influence of sodium on activation of gold species in Y–zeolites. Catal Commun 9:1277–1281

    Article  CAS  Google Scholar 

  34. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  CAS  PubMed  Google Scholar 

  35. Karooby E, Granpayeh N (2019) Potential applications of nanoshell bow-tie antennas for biological imaging and hyperthermia therapy. Opt Eng 58:065102–065102

    Article  CAS  Google Scholar 

  36. Pestryakov A, Tuzovskaya I, Smolentseva E, Bogdanchikova N, Jentoft FC, Knop-Gericke A (2005) Formation of gold nanoparticles in zeolites. Int J Mod Phys B 19:2321–2326

    Article  CAS  Google Scholar 

  37. Jiang H, Meng X, Dai H, Deng J, Liu Y, Zhang L, Zhao Z, Zhang R (2012) High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. J Hazard Mater 217:92–99

    Article  PubMed  Google Scholar 

  38. Ameur N, Bachir R (2020) Study of 1D titanate-based materials-new modification of the synthesis procedure and surface properties-recent applications. ChemistrySelect 5:1164–1185

    Article  CAS  Google Scholar 

  39. Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516

    Article  CAS  Google Scholar 

  40. Irmak S, Kusvuran E, Erbatur O (2004) Degradation of 4-chloro-2-methylphenol in aqueous solution by UV irradiation in the presence of titanium dioxide. Appl Catal B 54:85–91

    Article  CAS  Google Scholar 

  41. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49:1–14

    Article  CAS  Google Scholar 

  42. Wang Y, Hong C-S (1999) Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2 suspensions. Water Res 33:2031–2036

    Article  CAS  Google Scholar 

  43. Navío JA, Colón G, Sánchez-Soto PJ, Macias M (1997) Effects of H2O2 and SO42-species on the crystalline structure and surface properties of ZrO2 processed by alkaline precipitation. Chem Mater 9:1256–1261

    Article  Google Scholar 

  44. Hirakawa T, Nosaka Y (2002) Properties of O2∙− and OH formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18:3247–3254

    Article  CAS  Google Scholar 

  45. Sahel K, Elsellami L, Mirali I, Dappozze F, Bouhent M, Guillard C (2016) Hydrogen peroxide and photocatalysis. Appl Catal B 188:106–112

    Article  CAS  Google Scholar 

  46. Boonstra A, Mutsaers C (1975) Adsorption of hydrogen peroxide on the surface of titanium dioxide. J Phys Chem 79:1940–1943

    Article  CAS  Google Scholar 

  47. Ohno T, Masaki Y, Hirayama S, Matsumura M (2001) TiO2-photocatalyzed epoxidation of 1-decene by H2O2 under visible light. J Catal 204:163–168

    Article  CAS  Google Scholar 

  48. Li X, Chen C, Zhao J (2001) Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 17:4118–4122

    Article  CAS  Google Scholar 

  49. Pavel CC, Park S-H, Dreier A, Tesche B, Schmidt W (2006) Structural defects induced in ETS-10 by postsynthesis treatment with H2O2 solution. Chem Mater 18:3813–3820

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research project under Grant Number RGP2/47/44.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and redaction. Material preparation, data collection and analysis are performed by all authors. The first draft of the manuscript is written and commented by Sanaa Ben Moussa.

Corresponding author

Correspondence to Sana Ben Moussa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6789 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Moussa, S. Application of the metallized titanate nanorod in the photodegradation of methyl orange. Reac Kinet Mech Cat 136, 2397–2408 (2023). https://doi.org/10.1007/s11144-023-02460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02460-6

Keywords

Navigation