Skip to main content
Log in

A density functional theory study of CO2 hydrogenation on carbon-terminated TaC (111) surface

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, the density functional theory implemented in the Vienna ab initio simulation package was used to shed more light on the catalytic Carbon dioxide (CO2) hydrogenation process on the (111) facet of the carbon-terminated tantalum carbide (TaC) surface. The adsorption of several intermediates and their hydrogenation elementary steps on the TaC (111) surface towards the formation and desorption of the main products including carbon monoxide (CO), methane (CH4), and methanol (CH3OH) was investigated. The results indicate that the involved intermediates adsorb strongly to the carbon-terminated TaC (111) surface by releasing large energies. The calculated reaction energies concluded in proposing the preferred mechanisms energetically, where the found pathways are overall endothermic which can be provided by the large exothermic adsorption energies of the intermediates. The favorite routes to the formation of desired compounds including CO, CH4, and CH3OH require overall reaction energies of 1.29, 5.96, and 6.63 eV, where they go through dihydroxycarbene (HOCOH) intermediate created from t-COOH hydrogenation. Along these routes, COH dehydrogenation to CO releases the largest exothermic reaction energy of − 2.30 eV, while hydrogenation of t-HCOH to CH2OH requires the highest endothermic reaction energy of 2.69 eV to proceed. It is concluded that CO and CH4 are the main products of CO2 hydrogenation on carbon terminated TaC (111) surface, in agreement with experimental and theoretical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Houghton J (2005) Global warming. Rep Prog Phys 68(6):1343–1403. https://doi.org/10.1088/0034-4885/68/6/r02

    Article  Google Scholar 

  2. Kaplan JO, New M (2006) Arctic climate change with a 2 °C global warming: timing, climate patterns and vegetation change. Clim Change 79(3):213–241. https://doi.org/10.1007/s10584-006-9113-7

    Article  CAS  Google Scholar 

  3. Kellstedt PM, Zahran S, Vedlitz A (2008) Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States. Risk Anal 28(1):113–126. https://doi.org/10.1111/j.1539-6924.2008.01010.x

    Article  PubMed  Google Scholar 

  4. Liverman DM, O’Brien KL (1991) Global warming and climate change in Mexico. Glob Environ Chang 1(5):351–364. https://doi.org/10.1016/0959-3780(91)90002-B

    Article  Google Scholar 

  5. McLaren D (2012) A comparative global assessment of potential negative emissions technologies. Process Saf Environ Prot 90(6):489–500. https://doi.org/10.1016/j.psep.2012.10.005

    Article  CAS  Google Scholar 

  6. Haszeldine RS, Flude S, Johnson G, Scott V (2018) Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments. Philos Trans R Soc A 376(2119):20160447. https://doi.org/10.1098/rsta.2016.0447

    Article  CAS  Google Scholar 

  7. Bednar J, Obersteiner M, Wagner F (2019) On the financial viability of negative emissions. Nat Commun 10(1):1783. https://doi.org/10.1038/s41467-019-09782-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anderson K, Peters G (2016) The trouble with negative emissions. Science 354(6309):182–183. https://doi.org/10.1126/science.aah4567

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Chan SH, Sun Q (2015) Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review. Nanoscale 7(19):8663–8683. https://doi.org/10.1039/C5NR00092K

    Article  CAS  PubMed  Google Scholar 

  10. Nizio M, Albarazi A, Cavadias S, Amouroux J, Galvez ME, Da Costa P (2016) Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. Int J Hydrogen Energy 41(27):11584–11592. https://doi.org/10.1016/j.ijhydene.2016.02.020

    Article  CAS  Google Scholar 

  11. Jean-Luc D, Kazuhiro S, Hironori A (1992) CO2 hydrogenation over carbide catalysts. Chem Lett 21(1):5–8. https://doi.org/10.1246/cl.1992.5

    Article  Google Scholar 

  12. Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W et al (2009) A short review of catalysis for CO2 conversion. Catal Today 148(3):221–231. https://doi.org/10.1016/j.cattod.2009.08.015

    Article  CAS  Google Scholar 

  13. Sarabadani Tafreshi S, Panahi SFKS, Taghizade N, Jamaati M, Ranjbar M, de Leeuw NH (2022) Thermodynamic and kinetic study of carbon dioxide hydrogenation on the metal-terminated tantalum-carbide (111) surface: a DFT calculation. Catalysts 12(10):1275

    Article  CAS  Google Scholar 

  14. Sarabadani Tafreshi S, Ranjbar M, Jamaati M, Panahi SFKS, Taghizade N, Torkashvand M et al (2023) Carbon dioxide hydrogenation over the carbon-terminated niobium carbide (111) surface: a density functional theory study. Phys Chem Chem Phys. https://doi.org/10.1039/D2CP04749G

    Article  PubMed  Google Scholar 

  15. Sarabadani Tafreshi S, Ranjbar M, Taghizade N, Panahi SFKS, Jamaati M, de Leeuw NH (2022) A first-principles study of CO2 hydrogenation on Niobium-terminated NbC (111) surface. ChemPhysChem 23:e202100781. https://doi.org/10.1002/cphc.202100781

    Article  CAS  PubMed  Google Scholar 

  16. Bratt D (2016) Catalytic CO2 hydrogenation—literature review: technology development since 2014

  17. Li L, Zhao N, Wei W, Sun Y (2013) A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel 108:112–130. https://doi.org/10.1016/j.fuel.2011.08.022

    Article  CAS  Google Scholar 

  18. Iandelli A, Palenzona A (1972) Magnetic susceptibility and expansion coefficient of the intermetallic compounds YbAl2 and YbAl3. J Less Common Metals 29(3):293–297. https://doi.org/10.1016/0022-5088(72)90117-8

    Article  CAS  Google Scholar 

  19. McKenna PM (1936) Tantalum carbide its relation to other hard refractory compounds. Ind Eng Chem 28(7):767–772. https://doi.org/10.1021/ie50319a004

    Article  CAS  Google Scholar 

  20. Nino A, Hirabara T, Sugiyama S, Taimatsu H (2015) Preparation and characterization of tantalum carbide (TaC) ceramics. Int J Refract Metal Hard Mater 52:203–208. https://doi.org/10.1016/j.ijrmhm.2015.06.015

    Article  CAS  Google Scholar 

  21. Rowcliffe DJ, Warren WJ (1970) Structure and properties of tantalum carbide crystals. J Mater Sci 5(4):345–350. https://doi.org/10.1007/PL00020109

    Article  CAS  Google Scholar 

  22. López-de-la-Torre L, Winkler B, Schreuer J, Knorr K, Avalos-Borja M (2005) Elastic properties of tantalum carbide (TaC). Solid State Commun 134(4):245–250. https://doi.org/10.1016/j.ssc.2005.01.036

    Article  CAS  Google Scholar 

  23. Viñes F, Sousa C, Liu P, Rodriguez J, Illas F (2005) A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides. J Chem Phys 122(17):174709

    Article  PubMed  Google Scholar 

  24. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2005) Trends in the chemical properties of early transition metal carbide surfaces: a density functional study. Catal Today 105(1):66–73

    Article  CAS  Google Scholar 

  25. Hugosson HW, Eriksson O, Jansson U, Ruban AV, Souvatzis P, Abrikosov I (2004) Surface energies and work functions of the transition metal carbides. Surf Sci 557(1–3):243–254

    Article  CAS  Google Scholar 

  26. Sharma BI, Maibam J, Paul R, Thapa R, Singh RB (2010) Studies on energy band structure of NbC and NbN using DFT. Indian J Phys 84(6):671–674

    Article  Google Scholar 

  27. Rodriguez JA, Evans J, Feria L, Vidal AB, Liu P, Nakamura K et al (2013) CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: production of CO, methanol, and methane. J Catal 307:162–169

    Article  CAS  Google Scholar 

  28. Quesne MG, Roldan A, de Leeuw NH, Catlow CRA (2018) Bulk and surface properties of metal carbides: implications for catalysis. Phys Chem Chem Phys 20(10):6905–6916

    Article  CAS  PubMed  Google Scholar 

  29. Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181(4099):547–549. https://doi.org/10.1126/science.181.4099.547

    Article  CAS  PubMed  Google Scholar 

  30. Morales-García Á, Calle-Vallejo F, Illas F (2020) MXenes: new horizons in catalysis. ACS Catal 10(22):13487–13503. https://doi.org/10.1021/acscatal.0c03106

    Article  CAS  Google Scholar 

  31. Gao G, O’Mullane AP, Du A (2017) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7(1):494–500. https://doi.org/10.1021/acscatal.6b02754

    Article  CAS  Google Scholar 

  32. Wu H, Almalki M, Xu X, Lei Y, Ming F, Mallick A et al (2019) MXene derived metal-organic frameworks. J Am Chem Soc 141(51):20037–20042. https://doi.org/10.1021/jacs.9b11446

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Kunkel C, Ramírez de la Piscina P, Homs N, Viñes F, Illas F (2017) Effective and highly selective CO generation from CO2 using a polycrystalline α-Mo2C catalyst. ACS Catal 7(7):4323–4335. https://doi.org/10.1021/acscatal.7b00735

    Article  CAS  Google Scholar 

  34. Posada-Pérez S, Ramírez PJ, Gutiérrez RA, Stacchiola DJ, Viñes F, Liu P et al (2016) The conversion of CO2 to methanol on orthorhombic β-Mo2C and Cu/β-Mo2C catalysts: mechanism for admetal induced change in the selectivity and activity. Catal Sci Technol 6(18):6766–6777

    Article  Google Scholar 

  35. Quesne MG, Roldan A, de Leeuw NH, Catlow CRA (2019) Carbon dioxide and water co-adsorption on the low-index surfaces of TiC, VC, ZrC and NbC: a DFT study. Phys Chem Chem Phys 21(20):10750–10760

    Article  CAS  PubMed  Google Scholar 

  36. Posada-Pérez S, Ramírez PJ, Evans J, Viñes F, Liu P, Illas F et al (2016) Highly active Au/δ-MoC and Cu/δ-MoC catalysts for the conversion of CO2: the metal/C ratio as a key factor defining activity, selectivity, and stability. J Am Chem Soc 138(26):8269–8278

    Article  PubMed  Google Scholar 

  37. Kunkel C, Vines F, Illas F (2016) Transition metal carbides as novel materials for CO 2 capture, storage, and activation. Energy Environ Sci 9(1):141–144

    Article  CAS  Google Scholar 

  38. Silveri F, Quesne MG, Roldan A, De Leeuw NH, Catlow CRA (2019) Hydrogen adsorption on transition metal carbides: a DFT study. Phys Chem Chem Phys 21(10):5335–5343

    Article  CAS  PubMed  Google Scholar 

  39. Posada-Pérez S, Viñes F, Ramirez PJ, Vidal AB, Rodriguez JA, Illas F (2014) The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-MO2C(001) surfaces. Phys Chem Chem Phys 16(28):14912–14921. https://doi.org/10.1039/C4CP01943A

    Article  PubMed  Google Scholar 

  40. Porosoff MD, Kattel S, Li W, Liu P, Chen JG (2015) Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides. Chem Commun 51(32):6988–6991

    Article  CAS  Google Scholar 

  41. Xu W, Ramírez PJ, Stacchiola D, Brito JL, Rodriguez JA (2015) The carburization of transition metal molybdates (MxMoO4, M = Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO2 hydrogenation. Catal Lett 145(7):1365–1373. https://doi.org/10.1007/s10562-015-1540-5

    Article  CAS  Google Scholar 

  42. Li N, Chen X, Ong W-J, MacFarlane DR, Zhao X, Cheetham AK et al (2017) Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 11(11):10825–10833. https://doi.org/10.1021/acsnano.7b03738

    Article  CAS  PubMed  Google Scholar 

  43. Shi Z, Yang H, Gao P, Chen X, Liu H, Zhong L et al (2018) Effect of alkali metals on the performance of CoCu/TiO2 catalysts for CO2 hydrogenation to long-chain hydrocarbons. Chin J Catal 39(8):1294–1302. https://doi.org/10.1016/S1872-2067(18)63086-4

    Article  CAS  Google Scholar 

  44. Tafreshi SS, Moshfegh AZ, de Leeuw NH (2019) Mechanism of photocatalytic reduction of CO2 by Ag3PO4(111)/g-C3N4 nanocomposite: a first-principles study. J Phys Chem C 123(36):22191–22201. https://doi.org/10.1021/acs.jpcc.9b04493

    Article  CAS  Google Scholar 

  45. Ou Z, Qin C, Niu J, Zhang L, Ran J (2019) A comprehensive DFT study of CO2 catalytic conversion by H2 over Pt-doped Ni catalysts. Int J Hydrogen Energy 44(2):819–834. https://doi.org/10.1016/j.ijhydene.2018.11.008

    Article  CAS  Google Scholar 

  46. Morales-García Á, Fernández-Fernández A, Viñes F, Illas F (2018) CO2 abatement using two-dimensional MXene carbides. J Mater Chem A 6(8):3381–3385. https://doi.org/10.1039/C7TA11379J

    Article  Google Scholar 

  47. Morales-García Á, Mayans-Llorach M, Viñes F, Illas F (2019) Thickness biased capture of CO2 on carbide MXenes. Phys Chem Chem Phys 21(41):23136–23142. https://doi.org/10.1039/C9CP04833B

    Article  PubMed  Google Scholar 

  48. Edamoto K, Yamazaki M, Noda T, Ozawa K, Otani S (2001) Hydrogen adsorption on a HfC(111) surface: angle-resolved photoemission study. J Electron Spectrosc Relat Phenom 114–116:495–499. https://doi.org/10.1016/S0368-2048(00)00249-8

    Article  Google Scholar 

  49. Aizawa T, Hayami W, Souda R, Otani S, Ishizawa Y (1997) Hydrogen adsorption on transition-metal carbide (111) surfaces. Surf Sci 381(2):157–164. https://doi.org/10.1016/S0039-6028(97)00108-8

    Article  CAS  Google Scholar 

  50. Tokumitsu S, Anazawa T, Tanabe A, Sekine R, Miyazaki E, Edamoto K et al (1996) Interaction of hydrogen with ZrC(111) surface: angle-resolved photoemission study. Surf Sci 351(1):165–171. https://doi.org/10.1016/0039-6028(95)01274-5

    Article  CAS  Google Scholar 

  51. von Roedern B, Moddel G (1980) Gap states in hydrogenated amorphous silicon: a comparison of photoemission and photoconductivity results. Solid State Commun 35(6):467–471. https://doi.org/10.1016/0038-1098(80)90250-1

    Article  Google Scholar 

  52. Kitchin JR (2004) Tuning the electronic and chemical properties of metals: bimetallics and transition metal carbides, PhD Thesis, Dept of Materials Science and Engineering: University of Delaware. p 196.

  53. Gilles R, Mukherji D, Karge L, Strunz P, Beran P, Barbier B et al (2016) Stability of TaC precipitates in a Co-Re-based alloy being developed for ultra-high-temperature applications. J Appl Crystallogr 49(4):1253–1265. https://doi.org/10.1107/S1600576716009006

    Article  CAS  Google Scholar 

  54. Hocker S, Lipp H, Schmauder S, Bakulin AV, Kulkova SE (2021) Ab initio investigation of Co/TaC interfaces. J Alloys Compd 853:156944. https://doi.org/10.1016/j.jallcom.2020.156944

    Article  CAS  Google Scholar 

  55. Choi Y, Liu P (2009) Mechanism of ethanol synthesis from syngas on Rh(111). J Am Chem Soc 131(36):13054–13061. https://doi.org/10.1021/ja903013x

    Article  CAS  PubMed  Google Scholar 

  56. Dzade NY, de Leeuw NH (2021) Activating the FeS (001) surface for CO2 adsorption and reduction through the formation of sulfur vacancies: a DFT-D3 study. Catalysts 11(1):127

    Article  CAS  Google Scholar 

  57. Tominaga H, Nagai M (2005) Density functional study of carbon dioxide hydrogenation on molybdenum carbide and metal. Appl Catal A 282(1):5–13. https://doi.org/10.1016/j.apcata.2004.09.041

    Article  CAS  Google Scholar 

  58. Sun W, Kuang X, Liang H, Xia X, Zhang Z, Lu C et al (2020) Mechanical properties of tantalum carbide from high-pressure/high-temperature synthesis and first-principles calculations. Phys Chem Chem Phys 22(9):5018–5023. https://doi.org/10.1039/C9CP06819H

    Article  CAS  PubMed  Google Scholar 

  59. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  60. Perdew JP, Burke K, Ernzerhof M (1998) Perdew, burke, and ernzerhof reply. Phys Rev Lett 80(4):891. https://doi.org/10.1103/PhysRevLett.80.891

    Article  CAS  Google Scholar 

  61. Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1(2):211–228. https://doi.org/10.1002/wcms.30

    Article  CAS  Google Scholar 

  62. https://icsd.products.fiz-karlsruhe.de/.

  63. Qi K-Z, Wang G-C, Zheng W-J (2013) A first-principles study of CO hydrogenation into methane on molybdenum carbides catalysts. Surf Sci 614:53–63. https://doi.org/10.1016/j.susc.2013.04.001

    Article  CAS  Google Scholar 

  64. Liu P, Rodriguez JA (2006) Water-gas-shift reaction on molybdenum carbide surfaces: essential role of the oxycarbide. J Phys Chem B 110(39):19418–19425. https://doi.org/10.1021/jp0621629

    Article  CAS  PubMed  Google Scholar 

  65. Porosoff MD, Yang X, Boscoboinik JA, Chen JG (2014) Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chem 126(26):6823–6827. https://doi.org/10.1002/ange.201404109

    Article  Google Scholar 

Download references

Acknowledgements

S.S.T thanks the Iran National Science Foundation (INSF) Grant No. 97020912 for the financial support of this investigation. The authors are also grateful to the Research Affairs Division of the Amirkabir University of Technology (AUT), Tehran, Iran, for their financial support. This work utilized the ARCHER2 UK National Supercomputing Service (http://archer2.ac.uk) through our participation in the UK's HEC Materials Chemistry Consortium, sponsored by the EPSRC (EP/R029431). Additionally, this work has used the computing resources provided by Cardiff University, HPC Wales, and the Advanced Research Computing at Cardiff (ARCCA) Division.

Funding

Funding was provided by Iran National Science Foundation (Grant Number 97020912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeedeh Sarabadani Tafreshi.

Ethics declarations

Conflict of interest

There are no competing interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarabadani Tafreshi, S., Taghizade, N., Sharifian, M. et al. A density functional theory study of CO2 hydrogenation on carbon-terminated TaC (111) surface. Reac Kinet Mech Cat 136, 1945–1963 (2023). https://doi.org/10.1007/s11144-023-02458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02458-0

Keywords

Navigation